The comparison of the effects of three types of piezoelectric ultrasonic tips and air polishing system on the filling materials: an in vitro study

2007 ◽  
Vol 5 (4) ◽  
pp. 205-210 ◽  
Author(s):  
T Arabaci ◽  
Y Çiçek ◽  
M Özgöz ◽  
V Çanakçi ◽  
CF Çanakçi ◽  
...  
2014 ◽  
Vol 60 (5) ◽  
pp. 200-203
Author(s):  
Andreea Borş ◽  
Cristina Molnar-Varlam ◽  
Melinda Székely

Abstract Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil), two compomers (Dyract Extra and Twinky Star) and two glass ionomers (Ketac Molar and Fuji II LC). Twenty disks (10mm×2mm) of each material were prepared (n=120) and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola) 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm) and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR). For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm) after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar), 0.28±0.04 (Fuji II LC), 0.27±0.00 (Filtek Z550), 0.23±0.01 (X-tra fil), 0.20±0.00 (Twinky Star) and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05). Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.


Author(s):  
Hardi Rajanbhai Shukla ◽  
Aditi Mathur ◽  
Neema Shetty ◽  
Barkha Makhijani ◽  
Balaji Manohar

Background: Biofilm removal is the central part of the etiotropic and maintenance phase of periodontal therapy. Commercially available injection water jets such as Prophy-Jet allows an efficient and convenient biofilm removal as an adjunct to mechanical periodontal therapy. But, due to the abrasive nature of traditionally used air polishing powders such as sodium bicarbonate, there is a continuous research going on for less abrasive materials. Aims: To compare the effectiveness of air polishing using glycine powder and chlorhexidine acetate powder on tooth surface as compared to ultrasonic scaling and also to evaluate the time taken for stain removal. Materials and Methods: Thirty fully erupted, single rooted teeth extracted due to poor periodontal prognosis were used in this in-vitro study. The sample teeth were divided into 3 equal groups and stained in coffee solution. The test Groups A and B underwent air-polishing with glycine powder and chlorhexidine acetate powder respectively. Group C was control group and underwent ultrasonic scaling. Time taken for stain removal was recorded. The sample teeth were also evaluated under a stereo-microscope and digital micrometer preprocedurally and post-procedurally to measure surface changes. Results: The study showed statistically significant results (p<0.05) when measurements of changes in surface roughness of samples treated with glycine powder air-polishing were compared with ultrasonic scaling and chlorhexidine acetate powder air-polishing were compared with ultrasonic scaling. Surface texture loss as well as time taken for stain removal was minimum with glycine powder and maximum with ultrasonic scaling. Conclusion: Air-polishing with glycine powder was least abrasive on root surface followed by chlorhexidine acetate powder air-polishing. This is because of the lower particle size of glycine which also covers larger area in lesser time.  


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 179 ◽  
Author(s):  
Pier Carmine Passarelli ◽  
Marta De Leonardis ◽  
Giovan Battista Piccirillo ◽  
Viviana Desantis ◽  
Raffaele Papa ◽  
...  

Background: Peri-implantitis is an inflammatory disease with an increasing diffusion rate which can affect the long-term survival of a prosthetic rehabilitation. The present study focused on the decontaminating efficacy of chlorhexidine and air polishing system with sodium bicarbonate powder against Candida albicans, a microorganism which seems to have a superinfecting opportunistic role in the pathology. The aim of the authors was to investigate and compare the effectiveness of these treatments, commonly used in clinical practice. Methods: An in vitro study was conducted to analyze the effects of two widely used therapeutic aids for the disinfection of affected titanium implants: chlorhexidine (CHX) and air polishing with sodium bicarbonate powder (P). A qualitative and quantitative comparative analysis of the residual biofilm was carried out using a colorimetric assay (XTT) and scanning electron microscopy (SEM) observation. The experiment was conducted both on machined titanium surfaces and on rough sandblasted ones with the aim of bringing out differences in the therapeutic outcomes concerning the superficial texture of the implant. The null hypothesis was that no difference could be detected between the samples, regarding both the treatments performed and the nano-structural features of titanium. Results: The best results (on both types of implant surfaces) were obtained when combining the use of chlorhexidine and air polishing (C + P). A linear decrease in the optical density (OD) values recorded at three different time points (30 s, 1 min, 5 min) was also observed passing from the first to the last one. When observed under scanning electron microscope rough surfaces showed an extensive and highly structured biofilm, more complex if compared to the one encountered when analyzing machined implants. Conclusions: the present pilot study showed that rough surfaces can promote fungal adhesion and eventually hinder the outcome of a decontaminating treatment. For this purpose, the physio-chemical technique is always more efficient if compared to a single-technique approach regardless of the surface characteristics.


2015 ◽  
Vol 6 (2) ◽  
pp. 33-39 ◽  
Author(s):  
Devabhaktuni Disha Saraswathi ◽  
Sai Krishna Tejavath ◽  
Mandava Ramesh Babu ◽  
B Swetha ◽  
Bhavana Gandhi

2015 ◽  
Vol 7 (6) ◽  
pp. 607 ◽  
Author(s):  
Kishore Shetty ◽  
VAshiq Habib ◽  
SVidhyadhara Shetty ◽  
JaishriN Khed ◽  
VishnudasDinesh Prabhu

Sign in / Sign up

Export Citation Format

Share Document