Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie
Latest Publications


TOTAL DOCUMENTS

1490
(FIVE YEARS 199)

H-INDEX

38
(FIVE YEARS 4)

Published By Springer-Verlag

1615-6714, 1434-5293

Author(s):  
Ali Tayebi ◽  
Nima Sheikh Davoodi ◽  
Kasra Rahimipour ◽  
Reza Mousavi ◽  
Monirsadat Mirzadeh ◽  
...  

Author(s):  
Najmeh Movahhedian ◽  
Ahmadreza Sardarian ◽  
Arsalan Hosseini ◽  
Shahla Momeni Danaei ◽  
Shahram Hamedani

Author(s):  
Fayez Elkholy ◽  
Silva Schmidt ◽  
Falko Schmidt ◽  
Masoud Amirkhani ◽  
Bernd G. Lapatki

Abstract Background This in vitro study investigated the effect of three distinct daily loading/unloading cycles on force delivery during orthodontic aligner therapy. The cycles were applied for 7 days and were designed to reflect typical clinical aligner application scenarios. Materials and methods Flat polyethylene terephthalate glycol (PET-G) specimens (Duran®, Scheu Dental, Iserlohn, Germany) with thicknesses ranging between 0.4 and 0.75 mm were tested in a three-point-bending testing machine. Measurements comprised loading/unloading intervals of 12 h/12 h, 18 h/6 h, and 23 h/1 h, and specimens were exposed to bidistilled water during loading to simulate intraoral conditions. Results A very large decay in force for the PET‑G specimens could already be observed after the first loading period, with significantly different residual force values of 24, 20, and 21% recorded for the 12 h/12 h, 18 h/6 h, and 23 h/1 h loading/unloading modes, respectively (Mann–Whitney U test, p < 0.01). In addition, further decays in force from the first to the last loading period at day 7 of 13.5% (12 h/12 h), 9.7% (18 h/6 h), and 8.4% (23 h/1 h) differed significantly among the three distinct loading modes (Mann–Whitney U test, p < 0.01). Conclusion Although the initial material stiffness of PET‑G is relatively high, the transmission of excessive forces is attenuated by the high material-related force decay already within a few hours after intraoral insertion.


Author(s):  
Michael Greene ◽  
Amin Rizkalla ◽  
Timothy Burkhart ◽  
Antonios Mamandras ◽  
Ali Tassi

Author(s):  
Felix H. Blankenstein ◽  
Ulrike Kielburg ◽  
Ludwig Melerowitz ◽  
Daniel Stelmaszczyk

Abstract Aim Metal dental products lack precautionary statements regarding MR compatibility due to an exemption in the labelling obligation. Hence, it is difficult for radiologists to decide whether to remove fixed metal objects in patients prior to MRI. A solution could be the direct determination of the magnetic permeability (µr) as a decisive material-related predictor of artifact formation and other interactions. Thus, the applicability of an industrially used measurement device as a screening instrument and the relevance of the manufacturer’s application restrictions in vitro and in vivo were tested. Methods Precision and trueness were tested using self-made test objects with different dimensions and different permeability. To clarify whether the measurement results are affected by the remanence (BR) induced in the objects, 28 brackets of different materials were exposed to a weak and a strong external magnetic field and the magnetic flux density before and after these exposures was compared. The clinical test was performed on a volunteer with an orthodontic appliance experimentally composed of brackets with different levels of magnetic permeability (µr). Validity and intra- and interrater reliability were calculated using two rater groups consisting of four dentists and four medical-technical radiology assistants (MTRA), respectively. Results With coefficients of variation below 0.14%, precision was excellent regardless of object surface and size. Trueness was high on objects with µr ≤ 1.002, and decreased with increasing µr, for which size-dependent correction factors were calculated. Intra- and interrater reliability and validity were excellent and independent of professional intraoral manipulation experience. Conclusions The permeability measurement allows for a valid and reliable determination of the magnetizability of intraoral metal objects. When used as a screening tool to detect nonartifact-causing objects, no correction factor needs to be calculated. For the first time, it offers radiologists a decision support for the selective removal of only the highly permeable components of the multiband apparatus.


Sign in / Sign up

Export Citation Format

Share Document