The structure of the bursa copulatrix in virgin and mated snails, Helisoma duryi (Mollusca): role of acid phosphatase in reproduction

2005 ◽  
Vol 120 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Eric Clelland ◽  
Tania Di Renna ◽  
A.S.M. Saleuddin
Author(s):  
Randy Moore

Previous work has indicated that the graft incompatihility between Sedrmi telephoides and Solanum pennellil involves cell necrosis that results In a thick layer of collapsed cells at the graft Interface. This necrotic layer insulates the stock from the scion, which results in abscission of the Sedum scion after 4-6 weeks due to desiccation and starvation. Thus, cell autolysis (which is restricted to Sedum) characterizes the Incompatibility response in this system (1). In order to elucidate the events that lead to cell autolysis, and thus better understand the cellular site and mode of action of cellular incompatibility, the appearance and fate of the hydrolytlc enzyme acid phosphatase (AP) was followed in both the compatible Sedum autograft and the incompatible Sedum/Solanum heterograft. Acid phosphatase was localized by a modified Gomori-type reaction; positive (i.e., including NaF inhibitor) and negative (lacking substrate) controls showed no enzymatic precipitate. Following an initial association with the endoplasmic reticulum (ER) and dictyosomes at 6-10 hours after grafting, AP activity in the compatible Sedum autograft is associated primarily with the plasmalemma (Fig. 1). By 18-24 hours after grafting, the AP activity is restricted to the tono-plast and vacuole (Fig. 2). This strict compartmentation and absence of enzyme from the cytosol is maintained throughout the development of the compatible graft. While AP activity in the incompatible Sedum/Solanum heterograft is Initially similar to the compatible Sedum autograft (i.e., initially found on the ER and dictyosomes), there is a marked difference in enzyme localization in the two graft partners as the incompatibility response develops. As in the compatible autograft, Solanum cells at the graft interface show an Increase in AP activity that Is restricted to the vacuole and tonoplast, with little or no enzyme activity in the cytosol (Fig. 3). In comparable Sedum cells, however, there is a dramatic Increase In AP activity in the cytosol (Fig. h); this cytosollc AP activity is associated with thin fibril-like structures (Fig. 5) measuring approximately 60 A in diameter. This high cytoplasmic AP activity In Sedum cells results in cell autolysis, death, and eventual cell collapse to form the characteristic necrotic layer separating the two graft partners.


1980 ◽  
Vol 7 (3) ◽  
pp. 645-652 ◽  
Author(s):  
Andrew W. Bruce ◽  
Donald E. Mahan ◽  
William D. Belville

Urology ◽  
1981 ◽  
Vol 17 (6) ◽  
pp. 550-553 ◽  
Author(s):  
Lester A. Klein ◽  
Philip Shapiro

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatsuro Konagaya ◽  
Naoto Idogawa ◽  
Mamoru Watanabe

AbstractMost male lepidopterans produce fertile eupyrene sperm and non-fertile apyrene sperm, both of which are transferred to the female in a spermatophore during mating. Apyrene sperm outnumbers eupyrene sperm and both sperm types migrate from the bursa copulatrix to the spermatheca after mating. While eupyrene sperm are maintained in the spermatheca until oviposition, the number of apyrene sperm decreases with time. It is unclear whether apyrene sperm disappear from all sperm storage organs in females because both sperm types are often observed in the spermathecal gland. To investigate this, the numbers of both sperm types were estimated in the spermatheca and spermathecal gland of female Byasa alcinous (a monandrous butterfly) 6, 12, 48, 96, and 192 h after mating terminated. Apyrene sperm arrived in the spermatheca earlier than eupyrene sperm; however, some eupyrene and apyrene sperm migrated to the spermathecal gland from the spermatheca at almost the same time. The number of apyrene sperm reached a peak 12 h after the termination of mating and then decreased with time in both the spermatheca and spermathecal gland. Our results suggest that the role of apyrene sperm might be completed early after arriving in the spermatheca of B. alcinous.


1968 ◽  
Vol 46 (3) ◽  
pp. 499-502 ◽  
Author(s):  
B. M. Hegdekar

Female rats of the Long-Evans hooded strain, 4–6 months old and weighing 275–300 grams, were subjected to unilateral nephrectomy and the acid phosphatase activity in the remaining kidney was studied at the end of 24, 48, 72 hours, and 8 days respectively. Most of the acid phosphatase was found in the particulate fraction in normal kidneys. The enzyme activity in the soluble fraction was found to have increased the second day after the operation, but decreased to the original level by the end of 72 hours. The free activity of the lysosomal fraction also increased by the end of second postoperative day. A change in the permeability of the lysosomal membrane before the enzyme release was observed. The probable role of lysosomal enzymes in the initiation of mitotic divisions during compensatory renal hyperplasia is discussed.


1989 ◽  
Vol 17 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Alessandro Lepore ◽  
N. Lucarini ◽  
M. A. Evangelista ◽  
G. Palombaro ◽  
A. Londrillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document