scholarly journals Relation of Receptive Field Size and Salt Taste Responses in Chorda Tympani Fibers during Development

1987 ◽  
Vol 510 (1 Olfaction and) ◽  
pp. 504-505
Author(s):  
CHARLOTTE M. MISTRETTA ◽  
TAKATOSHI NAGAI ◽  
ROBERT M. BRADLEY
2016 ◽  
Vol 115 (6) ◽  
pp. 3062-3072 ◽  
Author(s):  
Yusuke Yokota ◽  
Robert M. Bradley

Afferent chorda tympani (CT) fibers innervating taste and somatosensory receptors in fungiform papillae have neuron cell bodies in the geniculate ganglion (GG). The GG/CT fibers branch in the tongue to innervate taste buds in several fungiform papillae. To investigate receptive field characteristics of GG/CT neurons, we recorded extracellular responses from GG cells to application of chemical and thermal stimuli. Receptive field size was mapped by electrical stimulation of individual fungiform papillae. Response latency to electrical stimulation was used to determine fiber conduction velocity. Responses of GG neurons to lingual application of stimuli representing four taste qualities, and water at 4°C, were used to classify neuron response properties. Neurons classified as SALT, responding only to NaCl and NH4Cl, had a mean receptive field size of six papillae. Neurons classified as OTHER responded to salts and other chemical stimuli and had smaller mean receptive fields of four papillae. Neurons that responded to salts and cold stimuli, classified as SALT/THERMAL, and neurons responding to salts, other chemical stimuli and cold, classified as OTHER/THERMAL, had mean receptive field sizes of six and five papillae, respectively. Neurons responding only to cold stimuli, categorized as THERMAL, had receptive fields of one to two papillae located at the tongue tip. Based on conduction velocity most of the neurons were classified as C fibers. Neurons with large receptive fields had higher conduction velocities than neurons with small receptive fields. These results demonstrate that GG neurons can be distinguished by receptive field size, response properties and afferent fiber conduction velocity derived from convergent input of multiple taste organs.


2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


2008 ◽  
Vol 25 (4) ◽  
pp. 419-427 ◽  
Author(s):  
Kazunori Yamamoto ◽  
Hiroshi Jouhou ◽  
Masanori Iwasaki ◽  
Akimichi Kaneko ◽  
Masahiro Yamada

2006 ◽  
Vol 46 (4) ◽  
pp. 467-474 ◽  
Author(s):  
Herbert A. Reitsamer ◽  
Renate Pflug ◽  
Melchior Franz ◽  
Sonja Huber

1986 ◽  
Vol 55 (6) ◽  
pp. 1136-1152 ◽  
Author(s):  
C. L. Baker ◽  
M. S. Cynader

Responses of direction-selective neurons in cat striate cortex (area 17) were studied with flashed-bar stimuli. Spatial parameters of interactions within the receptive field giving rise to direction selectivity and of receptive-field subunits were quantitatively determined for the same cells and correlated. A bar stimulus flashed sequentially at two nearby locations in the receptive field produced direction-selective behavior comparable with that elicited by continuously moving stimuli. Each cell exhibited a characteristic optimal spatial displacement, Dopt, for which responses in the presumed preferred and null directions were maximally distinct. In all cases, Dopt was much smaller than the receptive-field size. The spatial structure of receptive fields in simple cells was studied using single narrow-bar stimuli flashed at different locations in the receptive field. The resulting line-weighting function exhibited alternating regions of ON and OFF responses having a characteristic spatial period or wavelength, lambda. Spatial subunit structure in complex cells was determined by flashing two bars simultaneously in the receptive field. The response as a function of bar separation was again a wavelike function having a spatial wavelength, lambda. Values of the optimal displacement for direction selectivity, Dopt, showed a clear relationship with the spatial wavelength, lambda, for a given unit. Dopt was also correlated to a somewhat lesser degree with receptive-field size. Generally, the ratio of Dopt to lambda was approximately 1/10 to 1/4, in agreement with theoretical predictions by Marr and Poggio. Taken together with the findings of Movshon et al., these results indicate a systematic relationship between Dopt and the spatial frequency of a sinusoidal grating, which is optimal for that cell. Such a relationship is consistent with the results of human psychophysical experiments on apparent motion.


2020 ◽  
Vol 14 ◽  
Author(s):  
Agustin Lage-Castellanos ◽  
Giancarlo Valente ◽  
Mario Senden ◽  
Federico De Martino

Sign in / Sign up

Export Citation Format

Share Document