Cellular Mechanisms Regulating Synaptic Vesicle Exocytosis and Endocytosis in Aortic Baroreceptor Neurons

2006 ◽  
Vol 940 (1) ◽  
pp. 119-131 ◽  
Author(s):  
MEREDITH HAY ◽  
CAROLINE J. HOANG ◽  
JAYA PAMIDIMUKKALA
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Rebekah Elizabeth Mahoney ◽  
Jorge Azpurua ◽  
Benjamin A Eaton

Altered insulin signaling has been linked to widespread nervous system dysfunction including cognitive dysfunction, neuropathy and susceptibility to neurodegenerative disease. However, knowledge of the cellular mechanisms underlying the effects of insulin on neuronal function is incomplete. Here, we show that cell autonomous insulin signaling within the Drosophila CM9 motor neuron regulates the release of neurotransmitter via alteration of the synaptic vesicle fusion machinery. This effect of insulin utilizes the FOXO-dependent regulation of the thor gene, which encodes the Drosophila homologue of the eif-4e binding protein (4eBP). A critical target of this regulatory mechanism is Complexin, a synaptic protein known to regulate synaptic vesicle exocytosis. We find that the amounts of Complexin protein observed at the synapse is regulated by insulin and genetic manipulations of Complexin levels support the model that increased synaptic Complexin reduces neurotransmission in response to insulin signaling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Soulmee Koh ◽  
Wongyoung Lee ◽  
Sang Myun Park ◽  
Sung Hyun Kim

AbstractIn addition to providing structural support, caveolin-1 (Cav1), a component of lipid rafts, including caveolae, in the plasma membrane, is involved in various cellular mechanisms, including signal transduction. Although pre-synaptic membrane dynamics and trafficking are essential cellular processes during synaptic vesicle exocytosis/synaptic transmission and synaptic vesicle endocytosis/synaptic retrieval, little is known about the involvement of Cav1 in synaptic vesicle dynamics. Here we demonstrate that synaptic vesicle exocytosis is significantly impaired in Cav1–knockdown (Cav1–KD) neurons. Specifically, the size of the synaptic recycled vesicle pool is modestly decreased in Cav1–KD synapses and the kinetics of synaptic vesicle endocytosis are somewhat slowed. Notably, neurons rescued by triple mutants of Cav1 lacking palmitoylation sites mutants show impairments in both synaptic transmission and retrieval. Collectively, our findings implicate Cav1 in activity-driven synaptic vesicle dynamics—both exocytosis and endocytosis—and demonstrate that palmitoylation of Cav1 is important for this activity.


2019 ◽  
Vol 123 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Yuko Koyanagi ◽  
Christina L. Torturo ◽  
Daniel C. Cook ◽  
Zhenyu Zhou ◽  
Hugh C. Hemmings

Cell ◽  
2001 ◽  
Vol 104 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Hiroshi Tokumaru ◽  
Keiko Umayahara ◽  
Lorenzo L Pellegrini ◽  
Toru Ishizuka ◽  
Hideo Saisu ◽  
...  

2006 ◽  
Vol 96 (4) ◽  
pp. 2025-2033 ◽  
Author(s):  
Court Hull ◽  
Keith Studholme ◽  
Stephen Yazulla ◽  
Henrique von Gersdorff

The number and morphology of synaptic ribbons at photoreceptor and bipolar cell terminals has been reported to change on a circadian cycle. Here we sought to determine whether this phenomenon exists at goldfish Mb-type bipolar cell terminals with the aim of exploring the role of ribbons in transmitter release. We examined the physiology and ultrastructure of this terminal around two time points: midday and midnight. Nystatin perforated-patch recordings of membrane capacitance ( Cm) revealed that synaptic vesicle exocytosis evoked by short depolarizations was reduced at night, even though Ca2+ currents were larger. The efficiency of exocytosis (measured as the Δ Cm jump per total Ca2+ charge influx) was thus significantly lower at night. The paired-pulse ratio remained unchanged, however, suggesting that release probability was not altered. Hence the decreased exocytosis likely reflects a smaller readily releasable vesicle pool at night. Electron microscopy of single sections from intact retinas averaged 65% fewer ribbons at night. Interestingly, the number of active zones did not change from day to night, only the probability of finding a ribbon at an active zone. Additionally, synaptic vesicle halos surrounding the ribbons were more completely filled at night when these on-type bipolar cells are more hyperpolarized. There was no change, however, in the physical dimensions of synaptic ribbons from day to night. These results suggest that the size of the readily releasable vesicle pool and the efficiency of exocytosis are reduced at night when fewer ribbons are present at bipolar cell terminal active zones.


Sign in / Sign up

Export Citation Format

Share Document