genetic manipulations
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 148)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Yuting Wang ◽  
Liping Liu ◽  
Yifan Song ◽  
Xiaojie Yu ◽  
Hongkui Deng

AbstractSenescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.


2022 ◽  
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Gerald R Hammond ◽  
Yang Hong

Phosphatidylinositol (PtdIns) 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P2 or PIP2) are key phosphoinositides that determine the identity of the plasma membrane (PM) and regulate numerous key biological events there. To date, the complex mechanisms regulating the homeostasis and dynamic turnover of PM PI4P and PIP2 in response to various physiological conditions and stresses remain to be fully elucidated. Here we report that hypoxia in Drosophila induces acute and reversible depletion of PM PI4P and PIP2 that severely disrupts the electrostatic PM targeting of multiple polybasic polarity proteins. Genetically encoded ATP sensors confirmed that hypoxia induces acute and reversible reduction of cellular ATP levels which showed a strong real-time correlation with the levels of PM PI4P and PIP2 in cultured cells. By combining genetic manipulations with quantitative imaging assays we showed that PI4KIIIa, as well as Rbo/EFR3 and TTC7 that are essential for targeting PI4KIIIa to PM, are required for maintaining the homeostasis and dynamic turnover of PM PI4P and PIP2 under normoxia and hypoxia. Our results revealed that in cells challenged by energetic stresses triggered by hypoxia, ATP inhibition and possibly ischemia, dramatic turnover of PM PI4P and PIP2 could have profound impact on many cellular processes including electrostatic PM targeting of numerous polybasic proteins.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1780
Author(s):  
Onur Kaynarcalidan ◽  
Sara Moreno Mascaraque ◽  
Ingo Drexler

Various vaccinia virus (VACV) strains were applied during the smallpox vaccination campaign to eradicate the variola virus worldwide. After the eradication of smallpox, VACV gained popularity as a viral vector thanks to increasing innovations in genetic engineering and vaccine technology. Some VACV strains have been extensively used to develop vaccine candidates against various diseases. Modified vaccinia virus Ankara (MVA) is a VACV vaccine strain that offers several advantages for the development of recombinant vaccine candidates. In addition to various host-restriction genes, MVA lacks several immunomodulatory genes of which some have proven to be quite efficient in skewing the immune response in an unfavorable way to control infection in the host. Studies to manipulate these genes aim to optimize the immunogenicity and safety of MVA-based viral vector vaccine candidates. Here we summarize the history and further work with VACV as a vaccine and present in detail the genetic manipulations within the MVA genome to improve its immunogenicity and safety as a viral vector vaccine.


2021 ◽  
Author(s):  
Shreyas Jois ◽  
Yick-Bun Chan ◽  
Maria Paz Fernandez ◽  
Narsimha Pujari ◽  
Lea Joline Janz ◽  
...  

Abstract Peripheral sensory neurons are the gateway to the environment across species. In Drosophila, olfactory and gustatory senses are required to initiate courtship, as well as for the escalation of courtship patterns that lead to copulation. To be successful, copulation must last long enough to ensure the transfer of sperm and seminal fluid that ultimately leads to fertilization. The fly genitalia contain sex-specific bristle hairs innervated by mechanosensory neurons. To date, the role of the sensory information collected by these peripheral neurons in male copulatory behavior is unknown. Here, we employed genetic manipulations that allow driving gene expression in the male genitalia as a tool to uncover the role of these genitalia specific neurons in copulation. We found that the sensory information received by the mechanosensory neurons (MSNs) at the male genitalia plays a key role in copulation duration. We confirmed that these MSNs are cholinergic and co-express both fru and dsx. Moreover, our results show that the function of these fru/dsx cholinergic MSNs is required for copulation persistence, which ensures copulation is undisrupted in the presence of environmental stress before sperm transfer is complete.


2021 ◽  
Author(s):  
Paul Pfeiffer ◽  
Federico José Barreda Tomás ◽  
Jiameng Wu ◽  
Jan-Hendrik Schleimer ◽  
Imre Vida ◽  
...  

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.


2021 ◽  
Author(s):  
Nghi Dang ◽  
Alissa Lance-Byrne ◽  
Angela Tung ◽  
Xiaoge Guo ◽  
Ryan J Cecchi ◽  
...  

Abstract CRISPR/Cas9 has revolutionized the field of genome engineering. Yet, as the CRISPR toolbox has rapidly expanded, there remains a need for a comprehensive library of CRISPR/Cas9 reagents that allow users to perform complex cellular and genetic manipulations without requiring labor-intensive generation of reagents to meet each user’s unique experimental circumstances. Here we described the creation and validation of a pNAX CRISPR library consisting of 72 different Cas9 and gRNA expression plasmids to allow for efficient multiplex gene editing, activation, and repression in mammalian cells. The toolkit plasmids, which are piggyBac or lentiviral based, provide the means for reliable and rapid delivery of Cas9/gRNA through either transient transfection or stable integration. Using the toolkit, we demonstrate the ease with which users can perform single or multiplex gene editing and modulate the expression of both coding and non-coding genes. We also highlight the use of the comprehensive toolkit to perform combinatorial gene knockout to identify factors that regulate homologous recombination, along with investigating the regulatory role of a 68-kb intronic region associated with human disease.


2021 ◽  
Author(s):  
Pablo Vergara ◽  
Gabriela Pino ◽  
Jorge Vera ◽  
Magdalena Sanhueza

Prolonged changes in neural activity trigger homeostatic synaptic plasticity (HSP) allowing neuronal networks to operate in functional ranges. Cell-wide or input-specific adaptations can be induced by pharmacological or genetic manipulations of activity, and by sensory deprivation. Reactive functional changes caused by deafferentation may partially share mechanisms with HSP. Acute hippocampal slices constitute a suitable model to investigate relatively rapid (hours) pathway-specific modifications occurring after denervation and explore the underlying mechanisms. As Schaffer collaterals constitute a major glutamatergic input to CA1 pyramidal neurons, we conducted whole-cell recordings of miniature excitatory postsynaptic currents (mEPSCs) to evaluate changes over 12 hours after slice preparation and CA3 dissection. We observed an increment in mEPSCs amplitude and a decrease in decay time, suggesting synaptic AMPA receptor upregulation and subunit content modifications. Sorting mEPSC by rise time, a correlate of synapse location along dendrites, revealed amplitude raises at two separate domains. A specific frequency increase was observed in the same domains and was accompanied by a global, unspecific raise. Amplitude and frequency increments were lower at sites initially more active, consistent with local compensatory processes. Transient preincubation with a specific Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor either blocked or occluded amplitude and frequency upregulation in different synapse populations. Results are consistent with the concurrent development of different known CaMKII-dependent HSP processes. Our observations support that deafferentation causes rapid and diverse compensations resembling classical slow forms of adaptation to inactivity. These results may contribute to understand fast-developing homeostatic or pathological events after brain injury.


2021 ◽  
Author(s):  
Jeffrey Michael Rybak ◽  
Katherine S Barker ◽  
Jose F Munoz ◽  
Josie E Parker ◽  
Suhail Ahmad ◽  
...  

Candida auris has emerged as a healthcare-associated and multidrug-resistant fungal pathogen of great clinical concern. While as much as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, to date, no mechanisms contributing to this resistance have been identified. We report here mutations in the C. auris sterol-methyltransferase gene, ERG6, as the first identified mechanism of amphotericin B resistance in this emerging pathogen and describe the clinical case in which this high-level amphotericin B resistance was acquired in vivo during therapy. Whole genome sequencing revealed the four C. auris isolates obtained from this single patient case to be genetically related and identified a mutation in ERG6 as being associated with amphotericin B resistance. Cas9-mediated genetic manipulations confirmed this mutation alone to confer a >32-fold increase in amphotericin B resistance, and comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harboring the clinically derived ERG6 mutation. Together these findings represent the first significant step forward in the understanding of clinical amphotericin B resistance in C. auris.


2021 ◽  
Vol 15 ◽  
Author(s):  
Federica Genovese ◽  
Johannes Reisert ◽  
Vladimir J. Kefalov

The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Febe van Maldegem ◽  
Karishma Valand ◽  
Megan Cole ◽  
Harshil Patel ◽  
Mihaela Angelova ◽  
...  

AbstractMouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells.


Sign in / Sign up

Export Citation Format

Share Document