scholarly journals SCN5A Rare Variants in Familial Dilated Cardiomyopathy Decrease Peak Sodium Current Depending on the Common Polymorphism H558R and Common Splice Variant Q1077del

2010 ◽  
Vol 3 (6) ◽  
pp. 287-294 ◽  
Author(s):  
Jianding Cheng ◽  
Ana Morales ◽  
Jill D. Siegfried ◽  
Duanxiang Li ◽  
Nadine Norton ◽  
...  
Channels ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 253-261
Author(s):  
Rou-Mu Hu ◽  
Evelyn J. Song ◽  
David J. Tester ◽  
Isabelle Deschenes ◽  
Michael J. Ackerman ◽  
...  

2011 ◽  
Vol 43 (9) ◽  
pp. 461-466 ◽  
Author(s):  
Jianding Cheng ◽  
David J. Tester ◽  
Bi-Hua Tan ◽  
Carmen R. Valdivia ◽  
Stacie Kroboth ◽  
...  

The common polymorphism SCN5A-S1103Y (∼13% allelic frequency in African Americans) is a risk factor for arrhythmia, sudden unexplained death (SUD), and sudden infant death syndrome. Prompted by a case of autopsy-negative SUD in a 23-year-old African American man who collapsed while playing football, we hypothesized that S1103Y interacted with other SCN5A variants to pathologically modify sodium current ( INa). Mutational analysis of arrhythmia-associated genes in the victim revealed the variants SCN5A-R680H and SCN5A-S1103Y. These variants were made both separately and in the same cDNA construct of the alternative splice variant backgrounds (SCN5A-Q1077del and Q1077) and expressed in HEK293 cells. In the most abundant SCN5A-Q1077del, late INa for S1103Y alone was not significantly different from wild type (WT). However, late INa for R680H, R680H+S1103Y (coexpressed), and R680H/S1103Y (on the same cDNA) was increased 2.1-, 3.4-, and 3.6-fold, respectively, compared with WT. Intracellular acidosis (pH 6.7) increased late INa for S1103Y, R680H, R680H+S1103Y, and R680H/S1103Y by 2.2-, 2.4-, 5.0-, and 5.5-fold, respectively, compared with WT at pH 6.7. Expression in the less abundant SCN5A-Q1077 showed no increased late INa. This is the initial report of a functional interaction for the common polymorphism S1103Y with another mutation in the major transcript Q1077del of SCN5A. The “double hit” and environmental factor of acidosis may have converged to cause arrhythmic sudden death in this case.


Author(s):  
P Hutsteiner ◽  
N Jenewein ◽  
J Christ ◽  
O Ortmann ◽  
U Germer

Circulation ◽  
1995 ◽  
Vol 92 (12) ◽  
pp. 3387-3389 ◽  
Author(s):  
Jean-Bernard Durand ◽  
Linda L. Bachinski ◽  
Lisa C. Bieling ◽  
Grazyna Z. Czernuszewicz ◽  
Antoine B. Abchee ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 122-128
Author(s):  
Priya Bhardwaj ◽  
Christoffer Rasmus Vissing ◽  
Niels Kjær Stampe ◽  
Kasper Rossing ◽  
Alex Hørby Christensen ◽  
...  

Background: AARS2 encodes the mitochondrial protein alanyl-tRNA synthetase 2 (MT-AlaRS), an important enzyme in oxidative phosphorylation. Variants in AARS2 have previously been associated with infantile cardiomyopathy. Case summary: A 4-year-old girl died of infantile-onset dilated cardiomyopathy (DCM) in 1996. Fifteen years later, her 21-year-old brother was diagnosed with DCM and ultimately underwent heart transplantation. Initial sequencing of 15 genes discovered no pathogenic variants in the brother at the time of his diagnosis. However, 9 years later re-screening in an updated screening panel of 129 genes identified a homozygous AARS2 (c.1774C > T) variant. Sanger sequencing of the deceased girl confirmed her to be homozygous for the AARS2 variant, while both parents and a third sibling were all found to be unaffected heterozygous carriers of the AARS2 variant. Discussion: This report underlines the importance of repeated and extended genetic screening of elusive families with suspected hereditary cardiomyopathies, as our knowledge of disease-causing mutations continuously grows. Although identification of the genetic etiology in the reported family would not have changed the clinical management, the genetic finding allows genetic counselling and holds substantial value in identifying at-risk relatives.


2011 ◽  
Vol 108 (8) ◽  
pp. 1171-1176 ◽  
Author(s):  
Mario Petretta ◽  
Flora Pirozzi ◽  
Laura Sasso ◽  
Antonella Paglia ◽  
Domenico Bonaduce

Sign in / Sign up

Export Citation Format

Share Document