scholarly journals Plexus‐specific analysis of retinal neurovascular coupling using optical coherence tomography angiography

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
Martin Kallab ◽  
Nikolaus Hommer ◽  
Bingyao Tan ◽  
Martin Pfister ◽  
Andreas Schlatter ◽  
...  
2020 ◽  
Vol 9 (11) ◽  
pp. 3523
Author(s):  
Yi Stephanie Zhang ◽  
Ilda Mucollari ◽  
Changyow C. Kwan ◽  
Gianna Dingillo ◽  
Jaspreet Amar ◽  
...  

Diabetic retinopathy (DR) has traditionally been viewed as either a microvasculopathy or a neuropathy, though neurovascular coupling deficits have also been reported and could potentially be the earliest derangement in DR. To better understand neurovascular coupling in the diabetic retina, we investigated retinal hemodynamics by optical coherence tomography angiography (OCTA) in individuals with diabetes mellitus (DM) but without DR (DM no DR) and mild non-proliferative DR (mild NPDR) compared to healthy eyes. Using an experimental design to monitor the capillary responses during transition from dark adaptation to light, we examined 19 healthy, 14 DM no DR and 11 mild NPDR individuals. We found that the only structural vascular abnormality in the DM no DR group was increased superficial capillary plexus (SCP) vessel density (VD) compared to healthy eyes, while mild NPDR eyes showed significant vessel loss in the SCP at baseline. There was no significant difference in inner retinal thickness between the groups. During dark adaptation, the deep capillary plexus (DCP) VD was lower in mild NPDR individuals compared to the other two groups, which may leave the photoreceptors more susceptible to ischemia in the dark. When transitioning from dark to ambient light, both diabetic groups showed a qualitative reversal of VD trends in the SCP and middle capillary plexus (MCP), with significantly decreased SCP at 5 min and increased MCP VD at 50 s compared to healthy eyes, which may impede metabolic supply to the inner retina during light adaptation. Mild NPDR eyes also demonstrated DCP dilation at 50 s and 5 min and decreased adjusted flow index at 5 min in light. Our results show altered neurovascular responses in all three macular vascular plexuses in diabetic subjects in the absence of structural neuronal changes on high resolution imaging, suggesting that neurovascular uncoupling may be a key mechanism in the early pathogenesis of DR, well before the clinical appearance of vascular or neuronal loss.


2018 ◽  
Vol 8 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Anthony J. Deegan ◽  
Wendy Wang ◽  
Shaojie Men ◽  
Yuandong Li ◽  
Shaozhen Song ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 808
Author(s):  
Max Philipp Brinkmann ◽  
Nikolas Xavier Kibele ◽  
Michelle Prasuhn ◽  
Vinodh Kakkassery ◽  
Mario Damiano Toro ◽  
...  

Optical coherence tomography angiography (OCTA) is a non-invasive tool for imaging and quantifying the retinal and choroidal perfusion state in vivo. This study aimed to evaluate the acute effects of isometric and dynamic exercise on retinal and choroidal sublayer perfusion using OCTA. A pilot study was conducted on young, healthy participants, each of whom performed a specific isometric exercise on the first day and a dynamic exercise the day after. At baseline and immediately after the exercise, heart rate (HR), mean arterial pressure (MAP), superficial capillary plexus perfusion (SCPP), deep capillary plexus perfusion (DCPP), choriocapillaris perfusion (CCP), Sattlers’s layer perfusion (SLP), and Haller’s layer perfusion (HLP) were recorded. A total of 34 eyes of 34 subjects with a mean age of 32.35 ± 7.87 years were included. HR as well as MAP increased significantly after both types of exercise. Both SCPP and DCPP did not show any significant alteration due to isometric or dynamic exercise. After performing dynamic exercise, CCP, SLP, as well as HLP significantly increased. Changes in MAP correlated significantly with changes in HLP after the dynamic activity. OCTA-based analysis in healthy adults following physical activity demonstrated a constant retinal perfusion, supporting the theory of autoregulatory mechanisms. Dynamic exercise, as opposed to isometric activity, significantly changed choroidal perfusion. OCTA imaging may represent a novel and sensitive tool to expand the diagnostic spectrum in the field of sports medicine.


Sign in / Sign up

Export Citation Format

Share Document