scholarly journals Apatinib attenuates phenotypic switching of arterial smooth muscle cells in vascular remodelling by targeting the PDGF Receptor‐β

2020 ◽  
Vol 24 (17) ◽  
pp. 10128-10139
Author(s):  
Wenchao Shao ◽  
Xiaoguang Li ◽  
Jiangtong Peng ◽  
Siyuan Fan ◽  
Minglu Liang ◽  
...  
2018 ◽  
Vol 51 (2) ◽  
pp. 842-853 ◽  
Author(s):  
Yongshun Wang ◽  
Wei Cao ◽  
Jinjin Cui ◽  
Yang Yu ◽  
Yubo Zhao ◽  
...  

Background/Aims: Increasing wall stress or biomechanical stretch experienced by arteries influences the initiation of atherosclerotic lesions. This initiation is mediated by Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which are both effectors of the Hippo pathway. In this study, the functional roles of YAP/TAZ proteins in the regulation of the stretch-mediated programing of human umbilical arterial smooth muscle cells (HUASMCs) to a proliferative phenotype were examined. Methods: HUASMCs were seeded on a Matrigel-coated silicone chamber and subjected to biomechanical stretch for 24 h after 48 h of growth. YAP/TAZ small interfering RNA was used to specifically knockdown YAP/ TAZ expression in HUASMCs. Results: We observed that YAP/TAZ activation via biomechanical stretching is involved in the regulation of critical aspects of the HUASMC phenotypic switch. YAP/TAZ knockdown significantly attenuated the stretch-induced proliferative and pro-inflammatory phenotypes in HUASMCs. Furthermore, treatment with atorvastatin, an anti-atherosclerotic drug, attenuated the stretch-induced phenotypic switch of HUASMCs from the contractile to synthetic state by suppressing YAP/TAZ expression. Additional investigations demonstrated the role of stretch in inhibiting the Hippo pathway, leading to the activation of PI3-kinase (PI3K) and phosphoinositide dependent kinase (PDK1); the key molecule for the regulation of the PDK1 and Hippo complex interaction was Sav1. These results showed the importance of YAP/TAZ activation, induced by biomechanical stretch, in promoting atheroprone phenotypes in HUASMCs. Conclusion: Taken together, our findings revealed a mechanism by which YAP/TAZ activation contributes to the pathogenesis of atherosclerosis.


2006 ◽  
Vol 184 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Paula I. Morelli ◽  
Sofia Martinsson ◽  
Gunnel Östergren-Lundén ◽  
Vincent Fridén ◽  
Jonatan Moses ◽  
...  

2015 ◽  
Vol 37 (2) ◽  
pp. 432-444 ◽  
Author(s):  
Ming Xu ◽  
Xiao-Xue Li ◽  
Lei Wang ◽  
Mi Wang ◽  
Yang Zhang ◽  
...  

Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC) phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs) from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket), an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2), a basic leucine zipper (bZIP) transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion: Taken together, these results suggest that CD38 activity is required for 7-Ket-induced Ca2+ and consequently O2-. production in CAMs, which increases Nrf2 activity to maintain their differentiated status. When CD38 gene expression and function are deficient, the Nrf2 activity is suppressed, thereby leading to phenotypic switching of CAMs.


1992 ◽  
Vol 58 ◽  
pp. 339
Author(s):  
Tetsuzo Wakatsuki ◽  
Yutaka Nakaya ◽  
Yukiko Miyoshi ◽  
Zeng Xiao-Rong ◽  
Masahiro Nomura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document