o2 production
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 36)

H-INDEX

49
(FIVE YEARS 2)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 147
Author(s):  
Hsiang-Chieh Chuang ◽  
Huai-Ting Huang ◽  
Novi-Rosmala Dewi ◽  
Hsi-Hua Hsiao ◽  
Bo-Ying Chen ◽  
...  

Mercury (Hg) is a dangerous heavy metal that can accumulate in fish and is harmful when consumed by humans. This study investigated the bioaccumulation of mercury in the form of methylmercury (MeHg) and evaluated nonspecific immune responses such as phagocytic activity and superoxide anion (O2−) production in hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus). The hybrid grouper leukocytes were incubated with methylmercury chloride (CH3HgCl) at concentrations of 10–10,000 µg/L to determine cell viability, phagocytic activity, and O2− production in vitro. Subsequently, the grouper were exposed daily to CH3HgCl mixed in the experimental diets at concentrations of 0, 1, 5, and 10 mg/kg for 28 days. The bioaccumulation of MeHg in the liver, head kidney, and muscle tissue was measured, and the phagocytic activity and O2− production were evaluated. In vitro results indicated that cell viability was significantly lower than that of the control group at concentrations > 500 µg/L. The phagocytic rate and O2− production at concentrations ˃ 500 and ˃ 200 µg/L, respectively, were significantly lower than those of the control group. The dietary exposure demonstrated that MeHg accumulated more substantially in the liver and head kidney compared with the muscle tissue in the treatment groups. Moreover, the cumulative concentration significantly increased with higher concentrations and more days of exposure. The phagocytic rate and O2− production in the treatment groups were significantly lower than those in the control group from days 2 and 1, respectively. In conclusion, hybrid grouper accumulated significant MeHg in the liver and head kidney compared with the muscle tissue, and higher concentrations and more exposure days resulted in decreased cell viability, phagocytic activity, and O2− production.


2021 ◽  
Author(s):  
Alexander Panov ◽  
Vladimir I. Mayorov ◽  
Sergey I. Dikalov

We show that mitochondria from the kidney of mice (MKM), rat brain (RBM), and heart (RHM) oxidize long-chain fatty acids at high rates in all metabolic states only in the presence of any other mitochondrial metabolites: succinate, glutamate, or pyruvate. All supporting substrates increased several folds the respiration rates in State 4 and State 3. The stimulations of the State 3 respiration with palmitoyl-carnitine + malate oxidation (100%) were: with succinate in MKM 340%, RBM 370%, and RHM 340%; with glutamate - MKM 200%, RBM 270%, and RHM 270%; and with pyruvate - MKM 150%, RBM 260%, and RHM 280%. The increases in O2 consumption in State 4 were due to increased leakage of electrons to produce superoxide radicals (O2•). Earlier, we have shown that the brain and heart mitochondria possess a strong intrinsic inhibition of succinate oxidation to prevent the excessive O2• production at diminished functional loads. We show that kidney mitochondria lack the intrinsic inhibition of SDH. The new methodology to study β-oxidation of LCFAs opens the opportunity to study energy metabolism under normal and pathological conditions, particularly in the organs that utilize LCFAs as the main energy source.


2021 ◽  
Vol MA2021-02 (59) ◽  
pp. 1757-1757
Author(s):  
David Dickson ◽  
David Curran ◽  
Nasim Emadi ◽  
Christopher Dreyer ◽  
Greg Jackson ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1635
Author(s):  
Tomoyuki Shikata ◽  
Koki Yuasa ◽  
Saho Kitatsuji ◽  
Setsuko Sakamoto ◽  
Kazuki Akita ◽  
...  

The marine raphidophyte Chattonella marina complex forms red tides, causing heavy mortalities of aquacultured fishes in temperate coastal waters worldwide. The mechanism for Chattonella fish mortality remains unresolved. Although several toxic chemicals have been proposed as responsible for fish mortality, the cause is still unclear. In this study, we performed toxicity bioassays with red sea bream and yellowtail. We also measured biological parameters potentially related to ichthyotoxicity, such as cell size, superoxide (O2•−) production, and compositions of fatty acids and sugars, in up to eight Chattonella strains to investigate possible correlations with toxicity. There were significant differences in moribundity rates of fish and in all biological parameters among strains. One strain displayed no ichthyotoxicity even at high cell densities. Strains were categorized into three groups based on cell length, but this classification did not significantly correlate with ichthyotoxicity. O2•− production differed by a factor of more than 13 between strains at the late exponential growth phase. O2•− production was significantly correlated with ichthyotoxicity. Differences in fatty acid and sugar contents were not related to ichthyotoxicity. Our study supports the hypothesis that superoxide can directly or indirectly play an important role in the Chattonella-related mortality of aquacultured fishes.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5416
Author(s):  
Mohd Javed Akhtar ◽  
Maqusood Ahamed ◽  
Hisham Alhadlaq

The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•−), hydroxyl radical, etc.) by DCFH-DA and used a O2•− specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•− and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•− production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5235
Author(s):  
Pavlos Psathas ◽  
Maria Solakidou ◽  
Asterios Mantzanis ◽  
Yiannis Deligiannakis

Bi-Fe oxides are stable materials with potential photocatalytic activity under solar light photons. So far, however the photocatalytic potential of pure-phase nanosized mullite-Bi2Fe4O9 has not been studied. Usually, synthesis of pure-phase nanosized mullite-Bi2Fe4O9 is hampered by co-formation with perovskite BiFeO3. Herein we demonstrate that pure-phase mullite-Bi2Fe4O9 nanoparticles prepared by Flame Spray Pyrolysis (FSP) technology are highly efficient O2 production photocatalysts, achieving >1500 μmol g−1h−1. This outperforms all -so far reported- O2 production Bi-Fe-O photocatalysts. We present an FSP-based process for production of a versatile Bi-Fe-O platform, that can be easily optimized to obtain 100% mullite-Bi2Fe4O9 or 100% perovskite-BiFeO3 or their heterojunctions. The phase-evolution of the Bi-Fe-O materials has been studied by XPS, Raman, and EPR spectroscopies. Short post-FSP annealing process impacts the photoactivity of the BiFeO3 and Bi2Fe4O9 in distinct ways. Fe2+ centers in BiFeO3 can improve dramatically its O2 production efficiency, while solid-melt formation in Bi2Fe4O9 is a limiting factor.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Atreyee Chatterjee ◽  
Tanmay Dey ◽  
Gábor Galiba ◽  
Gábor Kocsy Kocsy ◽  
Narottam Dey ◽  
...  

The realized productivity of crop plants is generally lower than the potential productivity due to the influence of one or more external stresses (biotic and abiotic). Simultaneous occurrence of combination of abiotic stresses, which is more common under field condition, results in compounded effect on functional processes. Main focus of the present work is the combined effect of drought and light (irradiance) on rice plants. Potted seedlings of four selected rice lines (viz., IR36, N22, CRD40 and Bhootmuri) were exposed to three different levels of drought stress (50%, 25%, 12.5% of water) along with control (100%) in combination with three different light intensities (high, medium and low) during experimental period. After 7 days of stress, plant height and relative water content (RWC) were relatively low while root length increased with increasing water stress level and light intensity. Protein content increased with increasing water stress and light intensity, while chlorophyll level was higher at higher light intensities. Malondialdehyde (MDA) content, indicative of lipid peroxidation, increased with water stress only at high light intensities. Superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX) activities increased with combined drought and light stress level, whereas catalase (CAT) activity was higher at higher light intensities. On the other hand, superoxide (O2.-) production, but not hydrogen peroxide (H2O2) production was higher with increasing water stress and light intensity. It appears that light-induced ROS (O2.-) production under drought condition provoked oxidative stress, though a potential mechanism of tolerance was apparent through antioxidant system.


Sign in / Sign up

Export Citation Format

Share Document