Functional analysis of keratin filament network formation indicates clinical severity of epidermolysis bullosa simplex

Author(s):  
O. Ansai ◽  
S. Shinkuma ◽  
R. Hayashi ◽  
K. Tomii ◽  
T. Deguchi ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Fuying Chen ◽  
Lei Yao ◽  
Xue Zhang ◽  
Yan Gu ◽  
Hong Yu ◽  
...  

Epidermolysis bullosa simplex (EBS) is a blistering dermatosis that is mostly caused by dominant mutations in KRT5 and KRT14. In this study, we investigated one patient with localized recessive EBS caused by novel homozygous c.1474T > C mutations in KRT5. Biochemical experiments showed a mutation-induced alteration in the keratin 5 structure, intraepidermal blisters, and collapsed keratin intermediate filaments, but no quantitative change at the protein levels and interaction between keratin 5 and keratin 14. Moreover, we found that MAPK signaling was inhibited, while desmosomal protein desmoglein 1 (DSG1) was upregulated upon KRT5 mutation. Inhibition of EGFR phosphorylation upregulated DSG1 levels in an in vitro model. Collectively, our findings suggest that this mutation leads to localized recessive EBS and that keratin 5 is involved in maintaining DSG1 via activating MAPK signaling.


1991 ◽  
Vol 115 (6) ◽  
pp. 1661-1674 ◽  
Author(s):  
P A Coulombe ◽  
M E Hutton ◽  
R Vassar ◽  
E Fuchs

Previously we demonstrated that transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia exhibited a phenotype bearing resemblance to a subclass (Dowling Meara) of a heterogeneous group of human skin disorders known as epidermolysis bullosa simplex (EBS) (Vassar, R., P. A. Coulombe, L. Degenstein, K. Albers, E. Fuchs. 1991. Cell. 64:365-380.). The extent to which subtypes of EBS diseases might be genetically related is unknown, although they all exhibit skin blistering as a consequence of basal cell cytolysis. We have now examined transgenic mice expressing a range of keratin mutants which perturb keratin filament assembly to varying degrees. We have generated phenotypes which include most subtypes of EBS, demonstrating for the first time that at least in mice, these diseases can be generated by different mutations within a single gene. A strong correlation existed between the severity of the disease and the extent to which the keratin filament network was disrupted, implicating perturbations in keratin networks as an essential component of these diseases. Some keratin mutants elicited subtle perturbations, with no signs of the tonofilament clumping typical of Dowling-Meara EBS and our previous transgenic mice. Importantly, basal cell cytolysis still occurred, thereby uncoupling cytolysis from the generation of large, insoluble cytoplasmic protein aggregates. Moreover, cell rupture occurred in a narrowly defined subnuclear zone, and seemed to involve three factors: (a) filament perturbation, (b) the columnar shape of the basal cell, and (c) physical trauma. This work provides the best evidence to date for a structural function of a cytoplasmic intermediate filament network, namely to impart mechanical integrity to the cell in the context of its tissue.


1998 ◽  
Vol 110 (2) ◽  
pp. 132-137 ◽  
Author(s):  
James R. McMillan ◽  
John A. McGrath ◽  
Michael J. Tidman ◽  
Robin A.J. Eady

1995 ◽  
Vol 108 (11) ◽  
pp. 3463-3471 ◽  
Author(s):  
S.M. Morley ◽  
S.R. Dundas ◽  
J.L. James ◽  
T. Gupta ◽  
R.A. Brown ◽  
...  

Point mutations in the keratin intermediate filament genes for keratin 5 or keratin 14 are known to cause hereditary skin blistering disorders such as epidermolysis bullosa simplex, in which epidermal keratinocytes are extremely fragile and the skin blisters on mild trauma. We show that in 2 phenotypically diverse cases of epidermolysis bullosa simplex, the keratin mutations result in a thermoinstability of the intermediate filament cytoskeleton which can be reproducibly demonstrated even in the presence of tissue culture-induced keratins and in conditions where filament fragility is not otherwise obvious. SV40-T antigen and HPV16 (E6--E7) immortalised keratinocyte cell lines were examined, established from control and epidermolysis bullosa simplex-affected individuals with either severe (Dowling-Meara) or mild (Weber-Cockayne) forms of the disease. In standard tissue culture conditions no significant and consistent abnormality of the keratin cytoskeleton could be demonstrated. However after thermal stress a reduced stability of the keratin filaments was demonstrable in the epidermolysis bullosa simplex cell lines, with filaments breaking into aggregates similar to those seen in skin from EBS patients. These aggregates were maximal at 15 minutes after heat shock and the filament network structure was substantially reversed by 60 minutes. Differences were also seen in the cells during respreading after replating: cells containing mutant keratins were slower to respread than controls and fine aggregates were seen at the cell margins in the Dowling-Meara derived cell line. Such delays in restoring the normal intermediate filament network after physiological processes involving cytoskeleton remodelling may render the cells vulnerable to cytolysis in vivo if physically challenged during this time window. The steady reduction in the mitotic index of the epidermis during the first few years of life could then explain the clinical improvement which is frequently observed in growing children.


2006 ◽  
Vol 27 (7) ◽  
pp. 719-720 ◽  
Author(s):  
Felix B. Müller ◽  
Wolfgang Küster ◽  
Kerstin Wodecki ◽  
Hiram Almeida ◽  
Leena Bruckner-Tuderman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document