scholarly journals Speciation‐by‐depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation?

Author(s):  
Carlos Prada ◽  
Michael E. Hellberg
The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Catalina Palacios ◽  
Silvana García-R ◽  
Juan Luis Parra ◽  
Andrés M Cuervo ◽  
F Gary Stiles ◽  
...  

Abstract Ecological speciation can proceed despite genetic interchange when selection counteracts the homogenizing effects of migration. We tested predictions of this divergence-with-gene-flow model in Coeligena helianthea and C. bonapartei, 2 parapatric Andean hummingbirds with marked plumage divergence. We sequenced putatively neutral markers (mitochondrial DNA [mtDNA] and nuclear ultraconserved elements [UCEs]) to examine genetic structure and gene flow, and a candidate gene (MC1R) to assess its role underlying divergence in coloration. We also tested the prediction of Gloger’s rule that darker forms occur in more humid environments, and examined morphological variation to assess adaptive mechanisms potentially promoting divergence. Genetic differentiation between species was low in both ND2 and UCEs. Coalescent estimates of migration were consistent with divergence with gene flow, but we cannot reject incomplete lineage sorting reflecting recent speciation as an explanation for patterns of genetic variation. MC1R variation was unrelated to phenotypic differences. Species did not differ in macroclimatic niches but were distinct in morphology. Although we reject adaptation to variation in macroclimatic conditions as a cause of divergence, speciation may have occurred in the face of gene flow driven by other ecological pressures or by sexual selection. Marked phenotypic divergence with no neutral genetic differentiation is remarkable for Neotropical birds, and makes C. helianthea and C. bonapartei an appropriate system in which to search for the genetic basis of species differences employing genomics.


2004 ◽  
Vol 271 (1534) ◽  
pp. 97-105 ◽  
Author(s):  
Igor Emelianov ◽  
Frantiŝek Marec ◽  
James Mallet

2008 ◽  
Vol 17 (4) ◽  
pp. 1076-1088 ◽  
Author(s):  
PETR KOTLÍK ◽  
SILVIA MARKOVÁ ◽  
LUKÁŠ CHOLEVA ◽  
NINA G. BOGUTSKAYA ◽  
F. GULER EKMEKÇI ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Megan A. Supple ◽  
Riccardo Papa ◽  
Heather M. Hines ◽  
W. Owen McMillan ◽  
Brian A. Counterman

Author(s):  
Michael L. Arnold ◽  
Amanda N. Brothers ◽  
Jennafer A. P. Hamlin ◽  
Sunni J. Taylor ◽  
Noland H. Martin

Author(s):  
Jonás A. Aguirre‐Liguori ◽  
Brandon S. Gaut ◽  
Juan Pablo Jaramillo‐Correa ◽  
Maud I. Tenaillon ◽  
Salvador Montes‐Hernández ◽  
...  

Evolution ◽  
2000 ◽  
Vol 54 (5) ◽  
pp. 1725 ◽  
Author(s):  
Patrick D. Danley ◽  
Jeffrey A. Markert ◽  
Matthew E. Arnegard ◽  
Thomas D. Kocher

2021 ◽  
Author(s):  
Emily E. Bendall ◽  
Robin Bagley ◽  
Catherine R. Linnen ◽  
Vitor C. Sousa

AbstractEmpirical data from diverse taxa indicate that the hemizygous portions of the genome (X/Z chromosomes) evolve more rapidly than their diploid counterparts. Faster-X theory predicts increased rates of adaptive substitutions between isolated species, yet little is known about species experiencing gene flow. Here we investigate how hemizygosity impacts genome-wide patterns of differentiation during adaptive divergence with gene flow, combining simulations under isolation-with-migration models, a meta-analysis of autosomes and sex-chromosomes from diverse taxa, and analysis of haplodiploid species. First, using deterministic and stochastic simulations, we show that elevated differentiation at hemizygous loci occurs when there is gene flow, irrespective of dominance. This faster-X adaptive differentiation stems from more efficient selection resulting in reduced probability of losing the beneficial allele, greater migration-selection threshold, greater allele frequency differences at equilibrium, and a faster time to equilibrium. Second, by simulating neutral variation linked to selected loci, we show that faster-X differentiation affects linked variation due to reduced opportunities for recombination between locally adaptive and maladaptive immigrant haplotypes. Third, after correcting for expected differences in effective population size, we find that most taxon pairs (24 out of 28) exhibit faster-X differentiation in the meta-analysis. Finally, using a novel approach combining demographic modeling and simulations, we found evidence for faster-X differentiation in haplodiploid pine-feeding hymenopteran species adapted to different host plants. Together, our results indicate that divergent selection with gene flow can lead to higher differentiation at selected and linked variation in hemizygous loci (i.e., faster-X adaptive differentiation), both in X/Z-chromosomes and haplodiploid species.


Sign in / Sign up

Export Citation Format

Share Document