phosphorus concentration
Recently Published Documents


TOTAL DOCUMENTS

1097
(FIVE YEARS 232)

H-INDEX

60
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Asaeda ◽  
Mizanur Rahman ◽  
Helayaye Damitha Lakmali Abeynayaka

AbstractThe effect of combined stresses, photoinhibition, and nutrient depletion on the oxidative stress of cyanobacteria was measured in laboratory experiments to develop the biomass prediction model. Phormidium ambiguum was exposed to various photosynthetically active radiation (PAR) intensities and phosphorous (P) concentrations with fixed nitrogen concentrations. The samples were subjected to stress assays by detecting the hydrogen peroxide (H2O2) concentration and antioxidant activities of catalase (CAT) and superoxide dismutase (SOD). H2O2 concentrations decreased to 30 µmol m−2 s−1 of PAR, then increased with higher PAR intensities. Regarding P concentrations, H2O2 concentrations (nmol L−1) generally decreased with increasing P concentrations. SOD and CAT activities were proportionate to the H2O2 protein−1. No H2O2 concentrations detected outside cells indicated the biological production of H2O2, and the accumulated H2O2 concentration inside cells was parameterized with H2O2 concentration protein−1. With over 30 µmol m−2 s−1 of PAR, H2O2 concentration protein−1 had a similar increasing trend with PAR intensity, independently of P concentration. Meanwhile, with increasing P concentration, H2O2 protein−1 decreased in a similar pattern regardless of PAR intensity. Protein content decreased with gradually increasing H2O2 up to 4 nmol H2O2 mg−1 protein, which provides a threshold to restrict the growth of cyanobacteria. With these results, an empirical formula—protein (mg L−1) = − 192*Log((H2O2/protein)/4.1), where H2O2/protein (nmol mg−1) = − 0.312*PAR2/(502 + PAR2)*((25/PAR)4 + 1)*Log(P/133,100), as a function of total phosphorus concentration, P (µg L−1)—was developed to obtain the cyanobacteria biomass.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Jelena Milešević ◽  
Danijela Vranić ◽  
Mirjana Gurinović ◽  
Vladimir Korićanac ◽  
Branka Borović ◽  
...  

This study provides the data on dietary exposure of Serbian children to nitrites and phosphorus from meat products by combining individual consumption data with available analytical data of meat products. A total of 2603 and 1900 commercially available meat products were categorized into seven groups and analysed for nitrite and phosphorous content. The highest mean levels of nitrite content, expressed as NaNO2, were found in finely minced cooked sausages (40.25 ± 20.37 mg/kg), followed by canned meat (34.95 ± 22.12 mg/kg) and coarsely minced cooked sausages (32.85 ± 23.25 mg/kg). The EDI (estimated daily intake) of nitrites from meat products, calculated from a National Food Consumption Survey in 576 children aged 1–9 years, indicated that the Serbian children population exceeded the nitrite ADI (acceptable daily intake) proposed by EFSA (European Food Safety Authority) in 6.4% of children, with a higher proportion in 1–3-year-old participants. The mean phosphorus concentration varied from 2.71 ± 1.05 g/kg to 6.12 ± 1.33 g/kg in liver sausage and pate and smoked meat products, respectively. The EDI of phosphorus from meat products was far below the ADI proposed by EFSA, indicating that the use of phosphorus additives in Serbian meat products is generally in line with legislation.


2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Khaled Elsayed ◽  
Walid Tawfik ◽  
Ashraf E. M. Khater ◽  
Tarek S. Kayed ◽  
Mohamed Fikry

2022 ◽  
Vol 905 ◽  
pp. 353-358
Author(s):  
Zi Xin Liao ◽  
Xiao Hao Li ◽  
Ying Bin Xue ◽  
Nai De Yang ◽  
Zheng Wei Wu ◽  
...  

Soybean seedlings were treated with different phosphorus (P) concentrations for 20 days to investigate their growth and development. The root growth and development of soybean seedlings was the best when the concentration of phosphorus was 250 μmol/L. After 20 days of cultivation at this concentration, the roots of soybean seedlings were developed, indicating that the main root length, lateral root length, and the number of lateral root was the best among all treatments, and the number of lateral roots was quite a few. In addition, when the concentration of P was at 250 μmol/L, it had a better promotion effect on the plant height of soybean seedlings, and could significantly enhance the development of soybean seedlings. Moreover, the growth of soybean seedlings would be inhibited at the condition of phosphorus deficiency or excessive phosphorus. In this experiment, the growth indexes of soybean seedlings were compared between four treatments of phosphorus concentration, so as to make a basic study on the physiological effect of soybean on phosphorus in early stage.


Author(s):  
Aria Amirbahman ◽  
Kaci Fitzgibbon ◽  
Stephen A Norton ◽  
Linda Bacon ◽  
Sean D. Birkel

Phosphorus (P) is one of the key limiting nutrients for algal growth in most fresh surface waters. Understanding the determinants of P accumulation in the water column of lakes of...


2021 ◽  
Vol 12 (3) ◽  
pp. 414-422
Author(s):  
Rotaru Vladimir ◽  
Gusan Ana

A pot experiment was conducted to investigate the effects of P and Fe application on the biomass production and nutrients partitioning of two soybeans (Glycine max. L. Merr) cultivars grown in carbonated chernoziom (low in Fe and P) under water stress conditions. P and Fe were applied at two levels (0 and 100 mg P kg-1 soil; 0 and 5 mg Fe kg-1 soil). Control plants were grown at 70% water holding capacity (WHC) while their counterparts were subjected to 35% WHC water stress at initial flowering stage for two weeks. Considerable variability was observed in leaves, roots dry mass accumulation and nodulation among the soybean cultivars (Zodiac, Licurici) at both P and Fe levels in relation to water regimes. The results showed that drought significantly reduced biomass production irrespective of nutrient supply and its adverse effect was more pronounced at low nutrient supply. Leaf development and nodules growth were the most sensitive to water deficit and insufficient nutrient supply. Adequate P and Fe supply increased dry matter production and nutrient concentrations for soybean cultivars. Phosphorus concentration in plant parts was significantly higher at nil Fe compared with Fe application. Phosphorus application decreased Fe allocation to the leaves. The experimental results demonstrated that there was a positive effect of P and Fe adequate nutrition on P use efficiency. Hence, the sufficient phosphorus and iron supply maintained growth at high level, improved P and Fe status and partially alleviated drought effect on soybean plants.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Vitaly S. Savenko ◽  
Alla V. Savenko

Data on the geochemistry of phosphorus in the continental runoff of dissolved and solid substances were systematized and generalized, with a separate consideration of the processes of runoff transformation in river mouth areas. It has been established that atmospheric deposition, which many authors consider to be an important source of phosphorus in river runoff and not associated with mobilization processes in catchments, actually contains phosphorus from soil-plant recycling. This is confirmed by the fact that the input of phosphorus from the atmosphere into catchments exceeds its removal via water runoff. An analysis of the mass ratio of phosphorus in the adsorbed form and in the form of its own minerals was carried out. It was shown that the maximum mass of adsorbed phosphorus is limited by the solubility of its most stable minerals. The minimum concentrations of dissolved mineral and total phosphorus were observed in the rivers of the Arctic and subarctic belts; the maximum concentrations were confined to the most densely populated temperate zone and the zone of dry tropics and subtropics. In the waters of the primary hydrographic network, the phosphorus concentration exhibited direct relationships with the population density in the catchments and the mineralization of the river water and was closely correlated with the nitrogen content. This strongly suggests that economic activity is one of the main factors in the formation of river phosphorus runoff. The generalization of the authors’ and the literature’s data on the behavior of phosphorus at the river–sea mixing zone made it possible to draw a conclusion about the nonconservative distribution of phosphorus, in most cases associated with biological production and destruction processes. The conservative behavior of phosphorus was observed only in heavily polluted river mouths with abnormally high concentrations of this element.


2021 ◽  
Vol 13 (12) ◽  
pp. 5831-5846
Author(s):  
Xianjin He ◽  
Laurent Augusto ◽  
Daniel S. Goll ◽  
Bruno Ringeval ◽  
Yingping Wang ◽  
...  

Abstract. Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).


2021 ◽  
Vol 22 (24) ◽  
pp. 13536
Author(s):  
Ricardo Villa-Bellosta

Cardiovascular complications due to accelerated arterial stiffening and atherosclerosis are the leading cause of morbimortality in Western society. Both pathologies are frequently associated with vascular calcification. Pathologic calcification of cardiovascular structures, or vascular calcification, is associated with several diseases (for example, genetic diseases, diabetes, and chronic kidney disease) and is a common consequence of aging. Calcium phosphate deposition, mainly in the form of hydroxyapatite, is the hallmark of vascular calcification and can occur in the medial layer of arteries (medial calcification), in the atheroma plaque (intimal calcification), and cardiac valves (heart valve calcification). Although various mechanisms have been proposed for the pathogenesis of vascular calcification, our understanding of the pathogenesis of calcification is far from complete. However, in recent years, some risk factors have been identified, including high serum phosphorus concentration (hyperphosphatemia) and defective synthesis of pyrophosphate (pyrophosphate deficiency). The balance between phosphate and pyrophosphate, strictly controlled by several genes, plays a key role in vascular calcification. This review summarizes the current knowledge concerning phosphate and pyrophosphate homeostasis, focusing on the role of extracellular pyrophosphate metabolism in aortic smooth muscle cells and macrophages.


Sign in / Sign up

Export Citation Format

Share Document