host races
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 10)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ernesto Villacis-Perez ◽  
Simon Snoeck ◽  
Andre H. Kurlovs ◽  
Richard M. Clark ◽  
Johannes A. J. Breeuwer ◽  
...  

AbstractPlant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.


2021 ◽  
Author(s):  
Kalle J Nilsson ◽  
Jesús Ortega ◽  
Magne Friberg ◽  
Anna Runemark

Divergent ecological selection may diversify populations of the same species evolving in different niches. However, for adaptation to result in speciation, the ecologically divergent populations have to experience at least some degree of reproductive isolation. While ecological selection pressures in similar environments are expected to result in convergent adaptation, sexually selected traits may diverge in different directions in different locations. Here, we use a host shift in the phytophagous peacock fly Tephritis conura, with both host races represented in two geographically separate areas, East and West of the Baltic Sea, to investigate convergence in morphological adaptations. We asked i) if there are consistent morphological adaptations to a host plant shift and ii) if the adaptations to secondary sympatry with the alternate host race are consistent across contact zones. We found low, albeit significant, divergence between host races, but only a few traits, including the female ovipositor, were consistently different. Interestingly, co-existence with the other host race significantly increased the degree of morphological divergence, but the patterns of divergence were not consistent across the two sympatric contact zones. Thus, local stochastic fixation or reinforcement could generate trait divergence, and evidence from additional sources is hence needed to conclude whether divergence is adaptive.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190534 ◽  
Author(s):  
Peter J. Meyers ◽  
Meredith M. Doellman ◽  
Gregory J. Ragland ◽  
Glen R. Hood ◽  
Scott P. Egan ◽  
...  

Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis . The generality of this result is placed in the context of other similar systems. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


2020 ◽  
Vol 37 (7) ◽  
pp. 2045-2051
Author(s):  
Varvara Fazalova ◽  
Bruno Nevado

Abstract Accurate estimates of divergence times are essential to understand the evolutionary history of species. It allows linking evolutionary histories of the diverging lineages with past geological, climatic, and other changes in environment and shed light on the processes involved in speciation. The pea aphid radiation includes multiple host races adapted to different legume host plants. It is thought that diversification in this system occurred very recently, over the past 8,000–16,000 years. This young age estimate was used to link diversification in pea aphids to the onset of human agriculture, and led to the establishment of the pea aphid radiation as a model system in the study of speciation with gene flow. Here, we re-examine the age of the pea aphid radiation, by combining a mutation accumulation experiment with a genome-wide estimate of divergence between distantly related pea aphid host races. We estimate the spontaneous mutation rate for pea aphids as 2.7×10-10 per haploid genome per parthenogenic generation. Using this estimate of mutation rate and the genome-wide genetic differentiation observed between pea aphid host races, we show that the pea aphid radiation is much more ancient than assumed previously, predating Neolithic agriculture by several hundreds of thousands of years. Our results rule out human agriculture as the driver of diversification of the pea aphid radiation, and call for re-assessment of the role of allopatric isolation during Pleistocene climatic oscillations in divergence of the pea aphid complex.


2019 ◽  
Vol 20 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Judit Bereczki ◽  
Szilárd Póliska ◽  
Alex Váradi ◽  
János P. Tóth

AbstractThe plausibility of sympatric speciation is still debated despite increasing evidence, such as host races in insects. This speciation process may be occurring in the case of the two phenological forms of the obligatorily myrmecophilous Phengaris arion. The main goal of our research was to study the nature and causes of difference between these forms focusing primarily on the incipient speciation via host races. Molecular analyses based on highly variable microsatellites together with Wolbachia screening, male genitalia morphometrics and host ant studies were carried out on four syntopic sample pairs. Our results show that the two phenological forms of P. arion may meet the criteria for host plant races. They coexist in sympatry in certain parts of the species range which is allowed by the adaptation to the distinct phenology of the host plants. Negative selection acts against the intermediate individuals which are on the wing in the inappropriate time frame. Thus, disruptive selection affects and produces bimodal distributions of phenotypes. However, the phenology of food plants is not entirely distinct and fluctuates year by year. Therefore, the two forms can exchange genes occasionally depending on the length of the time slot when they can meet with each other. Consequently, the reproductive isolation could not be completed and the existence of the two arion forms may represent only an incipient stage of sympatric speciation. It is also clear that Wolbachia is likely not a driver of sympatric speciation in this case.


2019 ◽  
Vol 22 (4) ◽  
pp. 404-412
Author(s):  
Kei W. Matsubayashi ◽  
Sih Kahono ◽  
Sri Hartini ◽  
Haruo Katakura

2019 ◽  
Author(s):  
Varvara Fazalova ◽  
Bruno Nevado

AbstractAccurate estimates of divergence times are essential to understand the evolutionary history of species. It allows linking evolutionary histories of the diverging lineages with past geological, climatic and other changes in environment and shed light on the processes involved in speciation. The pea aphid radiation includes multiple host races adapted to different legume host plants. It is thought that diversification in this system occurred very recently, over the past 8,000 to 16,000 years. This young age estimate was used to link diversification in pea aphids to the onset of human agriculture, and lead to the establishment of the pea aphid radiation as a model system in the study of speciation with gene flow. Here, we re-examine the age of the pea aphid radiation, by combining a mutation accumulation experiment with a genome-wide estimate of divergence between distantly related pea aphid host races. We estimate the spontaneous mutation rate for pea aphids as 2.27 × 10−10 per haploid genome per parthenogenic generation. Using this estimate of mutation rate and the genome-wide genetic differentiation observed between pea aphid host races, we show that the pea aphid radiation is much more ancient than assumed previously, predating Neolithic agriculture by several hundreds of thousands of years. Our results rule out human agriculture as the driver of diversification of the pea aphid radiation, and call for re-assessment of the role of allopatric isolation during Pleistocene climatic oscillations in divergence of the pea aphid complex.


Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 97 ◽  
Author(s):  
Erliang Yuan ◽  
Hongyu Yan ◽  
Jing Gao ◽  
Huijuan Guo ◽  
Feng Ge ◽  
...  

Interspecific interaction with host plants have important consequences for the host race formation of herbivorous insects. Plant secondary metabolites, particularly those that are involved in host races specializing on plants, warrant the theory of host specialization. Acyrthosiphon pisum comprises various host races that adapt to different Fabaceae plants, which provides an ideal system for determining the behavioral and physiological mechanisms underlying host-adaptive diversification. The current study evaluated the effects of host transfer on population fitness, feeding behavior and the transcriptome-wide gene expression of the two host races of A. pisum, one of which was originally from Medicago sativa and the other from Pisum sativum. The results showed that the Pisum host race of A. pisum had a lower population abundance and feeding efficiency than the Medicago host race in terms of a longer penetration time and shorter duration times of phloem ingestion when fed on M. sativa. In contrast, few differences were found in the population abundance and feeding behavior of A. pisum between the two host races when fed on P. sativum. Meanwhile, of the nine candidate phenolic compounds, only genistein was significantly affected by aphid infestation; higher levels of genistein were detected in M. sativa after feeding by the Pisum host race, but these levels were reduced relative to uninfested controls after feeding by the Medicago host race, which suggested that genistein may be involved in the specialization of the aphid host race on M. sativa. Further exogenous application of genistein in artificial diets showed that the increase in genistein reduced the survival rate of the Pisum host race but had little effect on that of the Medicago host race. The transcriptomic profiles indicated that the transcripts of six genes with functions related to detoxification were up-regulated in the Pisum host race relative to the Medicago host race of A. pisum. These results suggested that the inducible plant phenolics and associated metabolic process in aphids resulted in their differential adaptations to their Fabaceae host.


Weed Research ◽  
2019 ◽  
Vol 59 (2) ◽  
pp. 107-118 ◽  
Author(s):  
B Stojanova ◽  
R Delourme ◽  
P Duffé ◽  
P Delavault ◽  
P Simier

Sign in / Sign up

Export Citation Format

Share Document