Classification of first quality fancy cashew kernels using four deep convolutional neural network models

2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Sriram K. Vidyarthi ◽  
Samrendra K. Singh ◽  
Rakhee Tiwari ◽  
Hong‐Wei Xiao ◽  
Rewa Rai
2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2020 ◽  
Vol 21 (4) ◽  
pp. 625-635
Author(s):  
Anandhakrishnan T ◽  
Jaisakthi S.M Murugaiyan

In this paper, we proposed a plant leaf disease identification model based on a Pretrained deep convolutional neural network (Deep CNN). The Deep CNN model is trained using an open dataset with 10 different classes of tomato leaves We observed that overall architectures which can increase the best performance of the model. The proposed model was trained using different training epochs, batch sizes and dropouts. The Xception has attained maximum accuracy compare with all other approaches. After an extensive simulation, the proposed model achieves classification accuracy better. This accuracy of the proposed work is greater than the accuracy of all other Pretrained approaches. The proposed model is also tested with respect to its consistency and reliability. The set of data used for this work was collected from the plant village dataset, including sick and healthy images. Models for detection of plant disease should predict the disease quickly and accurately in the early stage itself so that a proper precautionary measures can be applied to avoid further spread of the diseases. So, to reduce the main issue about the leaf diseases, we can analyze distinct kinds of deep neural network architectures in this research. From the outcomes, Xception has a constantly improving more to enhance the accuracy by increasing the number of epochs, without any indications of overfitting and decreasein quality. And Xception also generated a fine 99.45% precision in less computing time.


2018 ◽  
Vol 339 ◽  
pp. 615-624 ◽  
Author(s):  
Shaohua Chen ◽  
Laurent A. Baumes ◽  
Aytekin Gel ◽  
Manogna Adepu ◽  
Heather Emady ◽  
...  

Author(s):  
Yilin Yan ◽  
Min Chen ◽  
Saad Sadiq ◽  
Mei-Ling Shyu

The classification of imbalanced datasets has recently attracted significant attention due to its implications in several real-world use cases. The classifiers developed on datasets with skewed distributions tend to favor the majority classes and are biased against the minority class. Despite extensive research interests, imbalanced data classification remains a challenge in data mining research, especially for multimedia data. Our attempt to overcome this hurdle is to develop a convolutional neural network (CNN) based deep learning solution integrated with a bootstrapping technique. Considering that convolutional neural networks are very computationally expensive coupled with big training datasets, we propose to extract features from pre-trained convolutional neural network models and feed those features to another full connected neutral network. Spark implementation shows promising performance of our model in handling big datasets with respect to feasibility and scalability.


Sign in / Sign up

Export Citation Format

Share Document