Dynamic range and background filtering in raster image correlation spectroscopy

2020 ◽  
Vol 279 (2) ◽  
pp. 123-138
Author(s):  
R. DE METS ◽  
A. DELON ◽  
M. BALLAND ◽  
O. DESTAING ◽  
I. WANG
2011 ◽  
Vol 7 (12) ◽  
pp. 4195-4203 ◽  
Author(s):  
S.C.P. Norris ◽  
J. Humpolíčková ◽  
E. Amler ◽  
M. Huranová ◽  
M. Buzgo ◽  
...  

2018 ◽  
Vol 24 (S1) ◽  
pp. 1356-1357
Author(s):  
S. Makaremi ◽  
S. Ranjit ◽  
M.A. Digman ◽  
E. Gratton ◽  
D. M.E. Bowdish ◽  
...  

2010 ◽  
Vol 01 (01) ◽  
pp. 31-36 ◽  
Author(s):  
Sungmin Hong ◽  
Ying-Nai Wang ◽  
Hirohito Yamaguchi ◽  
Harinibytaraya Sreenivasappa ◽  
Chao-Kai Chou ◽  
...  

2019 ◽  
Vol 117 (10) ◽  
pp. 1900-1914 ◽  
Author(s):  
Marco Longfils ◽  
Nick Smisdom ◽  
Marcel Ameloot ◽  
Mats Rudemo ◽  
Veerle Lemmens ◽  
...  

2016 ◽  
Vol 111 (8) ◽  
pp. 1785-1796 ◽  
Author(s):  
Jelle Hendrix ◽  
Tomas Dekens ◽  
Waldemar Schrimpf ◽  
Don C. Lamb

Optik ◽  
2016 ◽  
Vol 127 (20) ◽  
pp. 9222-9230
Author(s):  
Tongda Wei ◽  
Haomin Yang ◽  
Jian Chang ◽  
Fei Gao ◽  
Yunhai Zhang

2015 ◽  
Vol 2 (6) ◽  
pp. 140454 ◽  
Author(s):  
D. J. Nieves ◽  
Y. Li ◽  
D. G. Fernig ◽  
R. Lévy

Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short enough for RICS (60 μs) with a piezo-driven photothermal heterodyne microscope is demonstrated (photothermal raster image correlation spectroscopy, PhRICS). As a proof of principle, PhRICS is used to measure the diffusion coefficient of gold nanoparticles in glycerol : water solutions. The diffusion coefficients of the nanoparticles measured by PhRICS are consistent with their size, determined by transmission electron microscopy. PhRICS was then used to probe the diffusion speed of gold nanoparticle-labelled fibroblast growth factor 2 (FGF2) bound to heparan sulfate in the pericellular matrix of live fibroblast cells. The data are consistent with previous single nanoparticle tracking studies of the diffusion of FGF2 on these cells. Importantly, the data reveal faster FGF2 movement, previously inaccessible by photothermal tracking, and suggest that inhomogeneity in the distribution of bound FGF2 is dynamic.


Sign in / Sign up

Export Citation Format

Share Document