fluorescence correlation spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

1602
(FIVE YEARS 133)

H-INDEX

89
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Nirmalya Bag ◽  
Erwin London ◽  
David A Holowka ◽  
Barbara Baird

Plasma membrane hosts numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation of the plasma membrane is emerging as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the co-existence liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It is recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy we choose two well-established model systems for transbilayer interactions: crosslinking by multivalent antigen of immunoglobulin E bound to receptor FcεRI, and crosslinking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 891
Author(s):  
Xinwei Gao ◽  
Yanfeng Liu ◽  
Jia Zhang ◽  
Luwei Wang ◽  
Yong Guo ◽  
...  

Although conventional fluorescence intensity imaging can be used to qualitatively study the drug toxicity of nanodrug carrier systems at the single-cell level, it has limitations for studying nanodrug transport across membranes. Fluorescence correlation spectroscopy (FCS) can provide quantitative information on nanodrug concentration and diffusion in a small area of the cell membrane; thus, it is an ideal tool for studying drug transport across the membrane. In this paper, the FCS method was used to measure the diffusion coefficients and concentrations of carbon dots (CDs), doxorubicin (DOX) and CDs-DOX composites in living cells (COS7 and U2OS) for the first time. The drug concentration and diffusion coefficient in living cells determined by FCS measurements indicated that the CDs-DOX composite distinctively improved the transmembrane efficiency and rate of drug molecules, in accordance with the conclusions drawn from the fluorescence imaging results. Furthermore, the effects of pH values and ATP concentrations on drug transport across the membrane were also studied. Compared with free DOX under acidic conditions, the CDs-DOX complex has higher cellular uptake and better transmembrane efficacy in U2OS cells. Additionally, high concentrations of ATP will cause negative changes in cell membrane permeability, which will hinder the transmembrane transport of CDs and DOX and delay the rapid diffusion of CDs-DOX. The results of this study show that the FCS method can be utilized as a powerful tool for studying the expansion and transport of nanodrugs in living cells, and might provide a new drug exploitation strategy for cancer treatment in vivo.


2021 ◽  
Vol 49 (4) ◽  
pp. 1547-1554
Author(s):  
Laura E. Kilpatrick ◽  
Stephen J. Hill

It has become increasingly apparent that some G protein-coupled receptors (GPCRs) are not homogeneously expressed within the plasma membrane but may instead be organised within distinct signalling microdomains. These microdomains localise GPCRs in close proximity with other membrane proteins and intracellular signalling partners and could have profound implications for the spatial and temporal control of downstream signalling. In order to probe the molecular mechanisms that govern GPCR pharmacology within these domains, fluorescence techniques with effective single receptor sensitivity are required. Of these, fluorescence correlation spectroscopy (FCS) is a technique that meets this sensitivity threshold. This short review will provide an update of the recent uses of FCS based techniques in conjunction with GPCR subtype selective fluorescent ligands to characterise dynamic ligand–receptor interactions in whole cells and using purified GPCRs.


Author(s):  
Angela Koh ◽  
Menachem Viktor Sarusie ◽  
Jürgen Ohmer ◽  
Utz Fischer ◽  
Christoph Winkler ◽  
...  

Spinal Muscular Atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons that is caused by a deficiency in ubiquitously expressed Survival Motor Neuron (SMN) protein. Two mutually exclusive hypotheses have been discussed to explain increased motor neuron vulnerability in SMA. Reduced SMN levels have been proposed to lead to defective snRNP assembly and aberrant splicing of transcripts that are essential for motor neuron maintenance. An alternative hypothesis proposes a motor neuron-specific function for SMN in axonal transport of mRNAs and/or RNPs. To address these possibilities, we used a novel in vivo approach with fluorescence correlation spectroscopy (FCS) in transgenic zebrafish embryos to assess the subcellular dynamics of Smn in motor neuron cell bodies and axons. Using fluorescently tagged Smn we show that it exists as two freely diffusing components, a monomeric, and a complex-bound, likely oligomeric, component. This oligomer hypothesis was supported by the disappearance of the complex-bound form for a truncated Smn variant that is deficient in oligomerization and a change in its dynamics under endogenous Smn deficient conditions. Surprisingly, our FCS measurements did not provide any evidence for an active transport of Smn in axons. Instead, our in vivo observations are consistent with previous findings that SMN acts as a chaperone for the assembly of snRNP and mRNP complexes.


2021 ◽  
Vol 352 ◽  
pp. 129343
Author(s):  
Agnieszka Mierczynska-Vasilev ◽  
Keren Bindon ◽  
Richard Gawel ◽  
Paul Smith ◽  
Krasimir Vasilev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document