scholarly journals EphrinA/EphA-induced ectodomain shedding of neural cell adhesion molecule regulates growth cone repulsion through ADAM10 metalloprotease

2013 ◽  
Vol 128 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Leann H. Brennaman ◽  
Marcia L. Moss ◽  
Patricia F. Maness
2006 ◽  
Vol 66 (12) ◽  
pp. 1378-1395 ◽  
Author(s):  
C. Leann Hinkle ◽  
Simone Diestel ◽  
Jeffrey Lieberman ◽  
Patricia F. Maness

1986 ◽  
Vol 102 (6) ◽  
pp. 2281-2294 ◽  
Author(s):  
A N van den Pol ◽  
U di Porzio ◽  
U Rutishauser

Ultrastructural analysis of colloidal gold immunocytochemical staining and immunofluorescence microscopy has been used to study the presence of neural cell adhesion molecule (NCAM) on the surface of neuronal growth cones. The studies were carried out with cultures of rat hypothalamic and ventral mesencephalic cells, using morphology and expression of tyrosine hydroxylase, neurofilaments, and glial fibrillary acidic protein as differential markers for neurons and glia. NCAM was found on all plasmalemmal surfaces of neurons including perikarya and neurites. The density of NCAM varied for different neurons growing in the same culture dish, and neurons had at least 25 times more colloidal gold particles on their plasmalemmal membranes than astroglia. Of particular interest in the present study was a strong labeling for NCAM on all parts of neuritic growth cones, including the lamellar and filopodial processes that extend from the tip of the axon. The density of NCAM was similar on different filopodia of the same growth cone. Therefore, in situations where homophilic (NCAM-NCAM) binding might contribute to axon pathfinding, a choice in direction is more likely to reflect differences in the NCAM content of the environment, rather than the distribution of NCAM within a growth cone. On the other hand, the variation in NCAM levels between single neurons in culture was significant and could provide a basis for selective responses of growing neurites.


1998 ◽  
Vol 140 (5) ◽  
pp. 1177-1186 ◽  
Author(s):  
Juan L. Brusés ◽  
Urs Rutishauser

The up- and downregulation of polysialic acid–neural cell adhesion molecule (PSA–NCAM) expression on motorneurons during development is associated respectively with target innervation and synaptogenesis, and is regulated at the level of PSA enzymatic biosynthesis involving specific polysialyltransferase activity. The purpose of this study has been to describe the cellular mechanisms by which that regulation might occur. It has been found that developmental regulation of PSA synthesis by ciliary ganglion motorneurons is not reflected in the levels of polysialyltransferase-1 (PST) or sialyltransferase-X (STX) mRNA. On the other hand, PSA synthesis in both the ciliary ganglion and the developing tectum appears to be coupled to the concentration of calcium in intracellular compartments. This study documents a calcium dependence of polysialyltransferase activity in a cell-free assay over the range of 0.1–1 mM, and a rapid sensitivity of new PSA synthesis, as measured in a pulse–chase analysis of tissue explants, to calcium ionophore perturbation of intracellular calcium levels. Moreover, the relevant calcium pool appears to be within a specific intracellular compartment that is sensitive to thapsigargin and does not directly reflect the level of cytosolic calcium. Perturbation of other major second messenger systems, such as cAMP and protein kinase–dependent pathways, did not affect polysialylation in the pulse chase analysis. These results suggest that the shuttling of calcium to different pools within the cell can result in the rapid regulation of PSA synthesis in developing tissues.


Sign in / Sign up

Export Citation Format

Share Document