membrane anchor
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 26)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 221 (3) ◽  
Author(s):  
Alexandre Toulmay ◽  
Fawn B. Whittle ◽  
Jerry Yang ◽  
Xiaofei Bai ◽  
Jessica Diarra ◽  
...  

Glycosylphosphatidylinositol (GPI) is a glycolipid membrane anchor found on surface proteins in all eukaryotes. It is synthesized in the ER membrane. Each GPI anchor requires three molecules of ethanolamine phosphate (P-Etn), which are derived from phosphatidylethanolamine (PE). We found that efficient GPI anchor synthesis in Saccharomyces cerevisiae requires Csf1; cells lacking Csf1 accumulate GPI precursors lacking P-Etn. Structure predictions suggest Csf1 is a tube-forming lipid transport protein like Vps13. Csf1 is found at contact sites between the ER and other organelles. It interacts with the ER protein Mcd4, an enzyme that adds P-Etn to nascent GPI anchors, suggesting Csf1 channels PE to Mcd4 in the ER at contact sites to support GPI anchor biosynthesis. CSF1 has orthologues in Caenorhabditis elegans (lpd-3) and humans (KIAA1109/TWEEK); mutations in KIAA1109 cause the autosomal recessive neurodevelopmental disorder Alkuraya-Kučinskas syndrome. Knockout of lpd-3 and knockdown of KIAA1109 reduced GPI-anchored proteins on the surface of cells, suggesting Csf1 orthologues in human cells support GPI anchor biosynthesis.


Author(s):  
xiaowen da ◽  
jiangfan guo ◽  
peng yan ◽  
Chao Yang ◽  
Hongfei Zhao ◽  
...  

Leaf-form ferredoxin-NADP+ oxidoreductases (LFNRs) function in the last step of the photosynthetic electron transport chain, exist as soluble proteins in the chloroplast stroma, and are weakly associated with thylakoids or tightly anchored to chloroplast membranes. Arabidopsis thaliana has two LFNRs, and the chloroplast proteins AtTROL (THYLAKOID RHODANESE-LIKE PROTEIN) and AtTIC62 (62-kDa SUBUNIT OF TRANSLOCON OF INNER CHLOROPLAST MEMBRANE) participate in anchoring AtLFNRs to the thylakoid membrane. By contrast, the membrane anchoring mechanism of rice (Oryza sativa) LFNRs has not been elucidated. Here, we investigated the membrane-anchoring mechanism of LFNRs and its physiological roles in rice. We characterized the rice protein OsTROL1 based on its homology to AtTROL and showed that OsTROL1 is also a thylakoid membrane anchor and its loss led to a compensatory increase in OsTIC62. Moreover, OsLFNR1 attachment through a membrane anchor depends on OsLFNR2, unlike their Arabidopsis counterparts. In addition, OsTIC62 was more highly expressed in rice under dark than under light conditions, consistent with the increased membrane binding of OsLFNR in the dark. Moreover, we observed reciprocal stabilization between OsLFNRs and their membrane anchors. Therefore, our study sheds light on the mechanisms anchoring LFNRs to membranes in rice and highlights differences with Arabidopsis


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2204
Author(s):  
Manjula Mischler ◽  
Gregor Meyers

The pestivirus classical swine fever virus (CSFV) represents one of the most important pathogens of swine. Its virulence is dependent on the RNase activity of the essential structural glycoprotein Erns that uses an amphipathic helix as a membrane anchor and forms homodimers via disulfide bonds employing cysteine 171. Dimerization is not necessary for CSFV viability but for its virulence. Mutant Erns proteins lacking cysteine 171 are still able to interact transiently as shown in crosslink experiments. Deletion analysis did not reveal the presence of a primary sequence-defined contact surface essential for dimerization, but indicated a general importance of an intact ectodomain for efficient establishment of dimers. Pseudoreverted viruses reisolated in earlier experiments from pigs with mutations Cys171Ser/Ser209Cys exhibited partially restored virulence and restoration of the ability to form Erns homodimers. Dimer formation was also observed for experimentally mutated proteins, in which other amino acids at different positions of the membrane anchor region of Erns were replaced by cysteine. However, with one exception of two very closely located residues, the formation of disulfide-linked dimers was only observed for cysteine residues located at the same position of the helix.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomas Laursen ◽  
Hiu Yue Monatrice Lam ◽  
Kasper Kildegaard Sørensen ◽  
Pengfei Tian ◽  
Cecilie Cetti Hansen ◽  
...  

AbstractPlant metabolism depends on cascade reactions mediated by dynamic enzyme assemblies known as metabolons. In this context, the cytochrome P450 (P450) superfamily catalyze key reactions underpinning the unique diversity of bioactive compounds. In contrast to their soluble bacterial counterparts, eukaryotic P450s are anchored to the endoplasmic reticulum membrane and serve as metabolon nucleation sites. Hence, membrane anchoring appears to play a pivotal role in the evolution of complex biosynthetic pathways. Here, a model membrane assay enabled characterization of membrane anchor dynamics by single molecule microscopy. As a model system, we reconstituted the membrane anchor of cytochrome P450 oxidoreductase (POR), the ubiquitous electron donor to all microsomal P450s. The transmembrane segment in the membrane anchor of POR is relatively conserved, corroborating its functional importance. We observe dynamic colocalization of the POR anchors in our assay suggesting that membrane anchoring might promote intermolecular interactions and in this way impact assembly of metabolic multienzyme complexes.


mBio ◽  
2021 ◽  
Author(s):  
Paige Garrison ◽  
Umaer Khan ◽  
Michael Cipriano ◽  
Peter J. Bush ◽  
Jacquelyn McDonald ◽  
...  

African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1203
Author(s):  
Birke Andrea Tews ◽  
Anne Klingebeil ◽  
Juliane Kühn ◽  
Kati Franzke ◽  
Till Rümenapf ◽  
...  

Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host’s innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 444
Author(s):  
Kay-Marcus Oetter ◽  
Juliane Kühn ◽  
Gregor Meyers

The pestivirus envelope protein Erns is anchored in membranes via a long amphipathic helix. Despite the unusual membrane topology of the Erns membrane anchor, it is cleaved from the following glycoprotein E1 by cellular signal peptidase. This was proposed to be enabled by a salt bridge-stabilized hairpin structure (so-called charge zipper) formed by conserved charged residues in the membrane anchor. We show here that the exchange of one or several of these charged residues reduces processing at the Erns carboxy-terminus to a variable extend, but reciprocal mutations restoring the possibility to form salt bridges did not necessarily restore processing efficiency. When introduced into an Erns-only expression construct, these mutations enhanced the naturally occurring Erns secretion significantly, but again to varying extents that did not correlate with the number of possible salt bridges. Equivalent effects on both processing and secretion were also observed when the proteins were expressed in avian cells, which points at phylogenetic conservation of the underlying principles. In the viral genome, some of the mutations prevented recovery of infectious viruses or immediately (pseudo)reverted, while others were stable and neutral with regard to virus growth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongri Gong ◽  
Yan Gao ◽  
Xiaoting Zhou ◽  
Yu Xiao ◽  
Weiwei Wang ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21616-3


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1522 ◽  
Author(s):  
Daniel Abankwa ◽  
Alemayehu A. Gorfe

Ras is the most frequently mutated oncogene and recent drug development efforts have spurred significant new research interest. Here we review progress toward understanding how Ras functions in nanoscale, proteo-lipid signaling complexes on the plasma membrane, called nanoclusters. We discuss how G-domain reorientation is plausibly linked to Ras-nanoclustering and -dimerization. We then look at how these mechanistic features could cooperate in the engagement and activation of RAF by Ras. Moreover, we show how this structural information can be integrated with microscopy data that provide nanoscale resolution in cell biological experiments. Synthesizing the available data, we propose to distinguish between two types of Ras nanoclusters, an active, immobile RAF-dependent type and an inactive/neutral membrane anchor-dependent. We conclude that it is possible that Ras reorientation enables dynamic Ras dimerization while the whole Ras/RAF complex transits into an active state. These transient di/oligomer interfaces of Ras may be amenable to pharmacological intervention. We close by highlighting a number of open questions including whether all effectors form active nanoclusters and whether there is an isoform specific composition of Ras nanocluster.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rasmus Kock Flygaard ◽  
Alexander Mühleip ◽  
Victor Tobiasson ◽  
Alexey Amunts

Abstract Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.


Sign in / Sign up

Export Citation Format

Share Document