Long-Term Magnetization Transfer Ratio Evolution in Multiple Sclerosis White Matter Lesions

2017 ◽  
Vol 28 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Yufan Zheng ◽  
Jar-Chi Lee ◽  
Richard Rudick ◽  
Elizabeth Fisher

2009 ◽  
Vol 15 (1) ◽  
pp. 16-27 ◽  
Author(s):  
M Rausch ◽  
PS Tofts ◽  
P Lervik ◽  
AR Walmsley ◽  
A Mir ◽  
...  

Quantitative magnetization transfer magnetic resonance imaging (qMT-MRI) can be used to improve detection of white matter tissue damage in multiple sclerosis (MS) and animal models thereof. To study the correlation between MT parameters and tissue damage, the magnetization transfer ratio (MTR), the parameter f* (closely related to the bound proton fraction) and the bound proton transverse relaxation time T2B of lesions in a model of focal experimental autoimmune encephalomyelitis (EAE) were measured on a 7T animal scanner and data were compared with histological markers indicative for demyelination, axonal density, and tissue damage. A clear spatial correspondence was observed between reduced values of MTR and demyelination in this animal model. We observed two different levels of MTR and f* reduction for these lesions. One was characterized by a pronounced demyelination and the other corresponded to a more severe loss of the cellular matrix. Changes in f* were generally more pronounced than those of MTR in areas of demyelination. Moreover, a reduction of f* was already observed for tissue where MTR was virtually normal. No changes in T2B were observed for the lesions. We conclude that MTR and qMT mapping are efficient and reliable readouts for studying demyelination in animal models of MS, and that the analysis of regional f* might be even superior to the analysis of MTR values. Therefore, quantitative mapping of f* from human brains might also improve the detection of white matter damage in MS.



1999 ◽  
Vol 166 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Haruo Hanyu ◽  
Tetsuichi Asano ◽  
Hirofumi Sakurai ◽  
Toshihiko Iwamoto ◽  
Masaru Takasaki ◽  
...  


Brain ◽  
2021 ◽  
Author(s):  
Matteo Pardini ◽  
J William L Brown ◽  
Roberta Magliozzi ◽  
Richard Reynolds ◽  
Declan T Chard

Abstract While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this ‘surface-in’ spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.



Brain ◽  
2015 ◽  
Vol 138 (5) ◽  
pp. 1239-1246 ◽  
Author(s):  
Zheng Liu ◽  
Matteo Pardini ◽  
Özgür Yaldizli ◽  
Varun Sethi ◽  
Nils Muhlert ◽  
...  




2009 ◽  
Vol 15 (6) ◽  
pp. 668-677 ◽  
Author(s):  
LK Fisniku ◽  
DR Altmann ◽  
M Cercignani ◽  
DJ Tozer ◽  
DT Chard ◽  
...  

Background In multiple sclerosis, grey matter (GM) damage appears more clinically relevant than either white matter damage or lesion load. Objective We investigated if normal-appearing white matter (NAWM) and grey matter tissue changes assessed by magnetization transfer ratio were associated with long-term disability. Methods Sixty-nine people were assessed 20 years after presentation with a clinically isolated syndrome (CIS) [28 still CIS, 31 relapsing-remitting multiple sclerosis, 10 secondary progressive multiple sclerosis], along with 19 healthy subjects. Mean magnetization transfer ratio, peak height (PH) and peak location of the normalized magnetization transfer ratio histograms were determined in NAWM and grey matter, as well as, white matter and GM Fraction (GMF) and T2-weighted lesion load. Results Median expanded disability status scale for multiple sclerosis patients was 2.5 (range 1–8). GM-PH, and less so, NAWM mean and peak location, were lower in multiple sclerosis patients ( P = 0.009) versus controls, relapsing-remitting multiple sclerosis versus CIS ( P = 0.008) and secondary progressive multiple sclerosis versus relapsing-remitting multiple sclerosis ( P = 0.002). GM-PH (as well as GMF) correlated with expanded disability status scale ( rs = −0.49; P = 0.001) and multiple sclerosis functional score ( rs = 0.51; P = 0.001). GM-PH independently predicted disability with similar strength to the associations of GMF with clinical measures. Conclusion Grey matter damage was related to long-term disability in multiple sclerosis cohort with a relatively low median expanded disability status scale. Markers of intrinsic grey matter damage (magnetization transfer ratio) and tissue loss offer clinically relevant information in multiple sclerosis.



2006 ◽  
Vol 12 (5) ◽  
pp. 662-665 ◽  
Author(s):  
A Charil ◽  
D Caputo ◽  
R Cavarretta ◽  
M P Sormani ◽  
P Ferrante ◽  
...  

Background Magnetization transfer ratio (MTR) permits the quantitative estimation of cervical cord tissue damage in patients with multiple sclerosis (MS). Objective To determine whether a single time-point MTR scan of the cervical cord is associated with short-term disease evolution in patients with relapsing-remitting (RR) MS. Methods Using a 1.5-T magnetic resonance imaging (MRI) system with a tailored cervical cord phased array coil, fast short-tau inversion recovery (fast-STIR) and MTR scans were obtained from 14 untreated patients with RRMS at baseline. Cervical cord MTR histograms were derived. Over the 18- month follow-up period, relapse rate was measured and disability assessed by the Expanded Disability Status Scale (EDSS) score. Results Average cervical cord MTR was correlated with relapse rate ( r= -0.56, P = 0.037). A moderate correlation ( r values ranging from -0.33 to -0.36) between baseline cervical cord MTR metrics and EDSS changes over 18 months was also noted, albeit statistical significance was not reached ( P = 0.26 and 0.21, respectively) perhaps because of the relatively small sample size. Conclusions This study suggests that a ‘snapshot’ MT MRI assessment of the cervical cord may detect cervical cord tissue changes associated with short-term disease evolution in RRMS.



2020 ◽  
pp. 135245852096910
Author(s):  
Paolo Preziosa ◽  
Elisabetta Pagani ◽  
Lucia Moiola ◽  
Mariaemma Rodegher ◽  
Massimo Filippi ◽  
...  

Background: In multiple sclerosis (MS), up to 57% of white matter lesions are chronically active. These slowly expanding lesions (SELs) contribute to disability progression. Objective: The aim of this study is to compare fingolimod and natalizumab effects on progressive linearly enlarging lesions (i.e. SELs), a putative biomarker of smouldering inflammation. Methods: Relapsing-remitting MS patients starting fingolimod ( n = 24) or natalizumab ( n = 28) underwent 3T brain magnetic resonance imaging (MRI) at baseline, months 6, 12 and 24. SELs were identified among baseline-visible lesions showing ⩾ 12.5% of annual increase, calculated by linearly fitting the Jacobian of the nonlinear deformation field between timepoints obtained combining T1- and T2-weighted scans. SEL burden, magnetization transfer ratio (MTR) and T1 signal intensity were compared using linear models. Results: The prevalences of fingolimod (75%) and natalizumab patients (46%) with ⩾ 1 SEL were not significantly different (adjusted- p = 0.08). Fingolimod group had higher SEL number and volume (adjusted- p ⩽ 0.047, not false discovery rate (FDR) survived). In both groups, SELs versus non-SELs showed lower MTR and T1 signal intensity (adjusted- p ⩽ 0.01, FDR-survived). Longitudinally, non-SEL MTR increased in both treatment groups (adjusted- p ⩽ 0.005, FDR-survived). T1 signal intensity decreased in SELs with both treatments (adjusted- p ⩽ 0.049, FDR-survived in fingolimod group) and increased in natalizumab non-SELs (adjusted- p = 0.03, FDR-survived). Conclusion: The effects of natalizumab and fingolimod on SEL occurrence seem modest, with natalizumab being slightly more effective. Both treatments may promote reparative mechanisms in stable or chronic inactive lesions.



Sign in / Sign up

Export Citation Format

Share Document