magnetization transfer
Recently Published Documents


TOTAL DOCUMENTS

1463
(FIVE YEARS 180)

H-INDEX

85
(FIVE YEARS 6)

Author(s):  
Laura Mancini ◽  
Stefano Casagranda ◽  
Guillaume Gautier ◽  
Philippe Peter ◽  
Bruno Lopez ◽  
...  

Abstract Purpose Accurate glioma classification affects patient management and is challenging on non- or low-enhancing gliomas. This study investigated the clinical value of different chemical exchange saturation transfer (CEST) metrics for glioma classification and assessed the diagnostic effect of the presence of abundant fluid in glioma subpopulations. Methods Forty-five treatment-naïve glioma patients with known isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status received CEST MRI (B1rms = 2μT, Tsat = 3.5 s) at 3 T. Magnetization transfer ratio asymmetry and CEST metrics (amides: offset range 3–4 ppm, amines: 1.5–2.5 ppm, amide/amine ratio) were calculated with two models: ‘asymmetry-based’ (AB) and ‘fluid-suppressed’ (FS). The presence of T2/FLAIR mismatch was noted. Results IDH-wild type had higher amide/amine ratio than IDH-mutant_1p/19qcodel (p < 0.022). Amide/amine ratio and amine levels differentiated IDH-wild type from IDH-mutant (p < 0.0045) and from IDH-mutant_1p/19qret (p < 0.021). IDH-mutant_1p/19qret had higher amides and amines than IDH-mutant_1p/19qcodel (p < 0.035). IDH-mutant_1p/19qret with AB/FS mismatch had higher amines than IDH-mutant_1p/19qret without AB/FS mismatch ( < 0.016). In IDH-mutant_1p/19qret, the presence of AB/FS mismatch was closely related to the presence of T2/FLAIR mismatch (p = 0.014). Conclusions CEST-derived biomarkers for amides, amines, and their ratio can help with histomolecular staging in gliomas without intense contrast enhancement. T2/FLAIR mismatch is reflected in the presence of AB/FS CEST mismatch. The AB/FS CEST mismatch identifies glioma subgroups that may have prognostic and clinical relevance.


2022 ◽  
Author(s):  
Siawoosh Mohammadi ◽  
Tobias Streubel ◽  
Leonie Klock ◽  
Antoine Lutti ◽  
Kerrin Pine ◽  
...  

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MT_sat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.


Author(s):  
Yulun Wu ◽  
Tobias Charles Wood ◽  
Fatemeh Arzanforoosh ◽  
Juan Antonio Hernandez-Tamames ◽  
Gareth John Barker ◽  
...  

Abstract Objective Clinical application of chemical exchange saturation transfer (CEST) can be performed with investigation of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects. Here, we investigated APT- and NOE-weighted imaging based on advanced CEST metrics to map tumor heterogeneity of non-enhancing glioma at 3 T. Materials and methods APT- and NOE-weighted maps based on Lorentzian difference (LD) and inverse magnetization transfer ratio (MTRREX) were acquired with a 3D snapshot CEST acquisition at 3 T. Saturation power was investigated first by varying B1 (0.5–2 µT) in 5 healthy volunteers then by applying B1 of 0.5 and 1.5 µT in 10 patients with non-enhancing glioma. Tissue contrast (TC) and contrast-to-noise ratios (CNR) were calculated between glioma and normal appearing white matter (NAWM) and grey matter, in APT- and NOE-weighted images. Volume percentages of the tumor showing hypo/hyperintensity (VPhypo/hyper,CEST) in APT/NOE-weighted images were calculated for each patient. Results LD APT resulting from using a B1 of 1.5 µT was found to provide significant positive TCtumor,NAWM and MTRREX NOE (B1 of 1.5 µT) provided significant negative TCtumor,NAWM in tissue differentiation. MTRREX-based NOE imaging under 1.5 µT provided significantly larger VPhypo,CEST than MTRREX APT under 1.5 µT. Conclusion This work showed that with a rapid CEST acquisition using a B1 saturation power of 1.5 µT and covering the whole tumor, analysis of both LD APT and MTRREX NOE allows for observing tumor heterogeneity, which will be beneficial in future studies using CEST-MRI to improve imaging diagnostics for non-enhancing glioma.


Author(s):  
Serdest Demir ◽  
Bryan Clifford ◽  
Wei‐Ching Lo ◽  
Azadeh Tabari ◽  
Augusto Lio M. Goncalves Filho ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Anna Orzyłowska ◽  
Wendy Oakden

Alzheimer’s disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kai Jiang ◽  
Christopher M. Ferguson ◽  
Roger C. Grimm ◽  
Xiangyang Zhu ◽  
James F. Glockner ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260256
Author(s):  
Scott A. Holmes ◽  
Steven J. Staffa ◽  
Anastasia Karapanagou ◽  
Natalia Lopez ◽  
Victoria Karian ◽  
...  

Background and purpose Clinical comparisons do not usually take laterality into account and thus may report erroneous or misleading data. The concept of laterality, well evaluated in brain and motor systems, may also apply at the level of peripheral nerves. Therefore, we sought to evaluate the extent to which we could observe an effect of laterality in MRI-collected white matter indices of the sciatic nerve and its two branches (tibial and fibular). Materials and methods We enrolled 17 healthy persons and performed peripheral nerve diffusion weighted imaging (DWI) and magnetization transfer imaging (MTI) of the sciatic, tibial and fibular nerve. Participants were scanned bilaterally, and findings were divided into ipsilateral and contralateral nerve fibers relative to self-reporting of hand dominance. Generalized estimating equation modeling was used to evaluate nerve fiber differences between ipsilateral and contralateral legs while controlling for confounding variables. All findings controlled for age, sex and number of scans performed. Results A main effect of laterality was found in radial, axial, and mean diffusivity for the tibial nerve. Axial diffusivity was found to be lateralized in the sciatic nerve. When evaluating mean MTR, a main effect of laterality was found for each nerve division. A main effect of sex was found in the tibial and fibular nerve fiber bundles. Conclusion For the evaluation of nerve measures using DWI and MTI, in either healthy or disease states, consideration of underlying biological metrics of laterality in peripheral nerve fiber characteristics need to considered for data analysis. Integrating knowledge regarding biological laterality of peripheral nerve microstructure may be applied to improve how we diagnosis pain disorders, how we track patients’ recovery and how we forecast pain chronification.


2021 ◽  
Author(s):  
Naila Rahman ◽  
Jordan Ramnarine ◽  
Kathy Xu ◽  
Arthur Brown ◽  
Corey A Baron

Background: Magnetization transfer saturation (MTsat) imaging was developed to reduce T1 dependence and improve specificity to myelin compared to the widely used MT ratio (MTR), while maintaining a feasible scan time. Knowledge of MTsat reproducibility is necessary to apply MTsat in preclinical neuroimaging. Purpose: To assess the test-retest reproducibility of MTR and MTsat in the mouse brain at 9.4 T and calculate sample sizes required to detect various effect sizes. Study Type: Prospective. Animal Model: C57Bl/6 Mouse Model (6 females and 6 males, aged 12 to 14 weeks). Field Strength/Sequence: Magnetization Transfer Imaging at 9.4 T. Assessment: All mice were scanned at two timepoints (5 days apart). MTR and MTsat maps were analyzed using mean region of interest (ROI), and whole brain voxel-wise analysis. Statistical Tests: Bland Altman plots assessed biases between test and retest measurements. Test retest reproducibility was evaluated via between and within-subject coefficients of variation (CV). Sample sizes required were calculated (at a 95 % significance level and power of 80 %), given various minimum detectable effect sizes, using both between and within-subject approaches. Results: Bland Altman plots showed negligible biases between test and retest sessions. ROI based and voxel-wise CVs revealed high reproducibility for both MTR (ROI: CVs < 8 %) and MTsat (ROI: CVs < 10 %). With a sample size of 6, changes on the order of 15% can be detected in MTR and MTsat, both between and within subjects, while smaller changes (6 to 8 %) require sample sizes of 10 to 15 for MTR, and 15 to 20 for MTsat. Data Conclusion: MTsat exhibits comparable reproducibility to MTR, while providing sensitivity to myelin with less T1 dependence than MTR. Our findings suggest both MTR and MTsat can detect moderate changes, common in pathologies, with feasible preclinical sample sizes. Keywords: magnetization transfer ratio, magnetization transfer saturation, reproducibility, preclinical rodent imaging


Sign in / Sign up

Export Citation Format

Share Document