First Report of Aster Yellows Phytoplasma (16SrI-B) Associated with Witches' Broom Disease of Melia azedarach var. japonica in Korea

2014 ◽  
Vol 163 (11-12) ◽  
pp. 1055-1058 ◽  
Author(s):  
Sang-Sub Han ◽  
So-Jin Baek ◽  
Sang-Hyun Lee ◽  
Sang-Tae Seo ◽  
Kamala-Kannan Seralathan
Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
I.-M. Lee ◽  
R. A. Dane ◽  
M. C. Black ◽  
Noel Troxclair

In early spring 2000 carrot crops in southwestern Texas were severely infected by an outbreak of phyllody associated with aster yellows phytoplasma. Cabbage crops that had been planted adjacent to these carrot fields began to display previously unobserved symptoms characteristic of phytoplasma infection. Symptoms included purple discoloration in leaf veins and at the outer edges of leaves on cabbage heads. Proliferation of sprouts also occurred at the base of the stem and between leaf layers of some plants, and sprouts sometimes continued to proliferate on extended stems. About 5% of cabbage plants in the field exhibited these symptoms. Two symptomless and four symptomatic cabbage heads were collected in early April from one cabbage field. Veinal tissues were stripped from each sample and used for total nucleic acid extraction. To obtain specific and sufficient amount of PCR products for analysis, nested PCR was performed by using primer pairs (first with P1/P7 followed by R16F2n/R16R2) (1,2) universal for phytoplasma detection. A specific 16S rDNA fragment (about 1.2 kb) was strongly amplified from the four symptomatic but not from the two asymptomatic samples. The nested PCR products obtained from the four symptomatic samples were then analyzed by restriction fragment length polymorphism (RFLP) using the restriction enzymes MseI, HhaI, and HpaII, and the RFLP patterns were compared to the published patterns of known phytoplasmas (1). The resulting RFLP patterns were identical to those of a phytoplasma belonging to subgroup B of the aster yellows phytoplasma group (16SrI). These RFLP patterns were also evident in putative restriction sites observed in a 1.5 kbp nucleotide sequence of the 16S rDNA. This is the first report of aster yellows phytoplasma associated disease symptoms in cabbage in Texas. The occurrence of cabbage proliferation coincided with the presence of high populations of the insect vector, aster leafhopper. References: (1) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) B. Schneider et al. 1995. Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, CA.


Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 488-488 ◽  
Author(s):  
R. D. Peters ◽  
M. E. Lee ◽  
C. R. Grau ◽  
S. J. Driscoll ◽  
R. M. Winberg ◽  
...  

Samples of alfalfa (Medicago sativa L.) leaves and stems showing symptoms of inter-veinal chlorosis and purpling, commonly associated with insect feeding, were collected from 8 sites in central and southern Wisconsin in autumn of 1998. Samples were frozen within 24 h of collection. Approximately 0.3 g of plant tissue from each sample was used for total DNA extraction according to the protocol of Zhang et al. (4), with minor modifications in grinding procedures and reagent volumes to optimize results. Nested polymerase chain reaction (PCR) was carried out by amplification of 16S rDNA with the universal primer pairs R16mF2/R16mR1 followed by R16F2n/R16R2 as described by Gunder-sen and Lee (1). Undiluted total sample DNA was used for the first amplification; PCR products were diluted (1:30) in sterile water prior to final amplification. Alfalfa DNA and sterile water were used as negative controls; DNA from phytoplasma causing X-disease in peach (CX) served as a positive control. Fragments of 16S rDNA from putative phytoplasmas amplified by PCR with the primer pair R16F2n/R16R2 were characterized by restriction endonuclease digestion (3). The resulting restriction fragment length polymorphism (RFLP) patterns were compared with patterns for known phytoplasmas described by Lee et al. (3). Products of nested PCR were also purified and sequenced with primers R16F2n/R16R2 and an automated DNA sequencer (ABI 377XL; C. Nicolet, Biotechnology Center, University of Wisconsin-Madison). Of 51 samples of alfalfa assessed, one sample from Evansville, WI, yielded a nested PCR product of the appropriate size (1.2 kb), indicating the presence of phytoplasma. Digestion of this product with various restriction enzymes produced RFLP patterns that were identical to those for phytoplasmas in the aster yellows phytoplasma subgroup 16SrI-A (3). Alignment of the DNA sequence of the nested PCR product from the positive sample with sequences found in the GenBank sequence data base (National Center for Biotechnology Information, Bethesda, MD) with the BLAST sequence similarity function confirmed this result. Although other phytoplasma strains (particularly those causing witches'-broom) have been reported to infect alfalfa (2), this is the first report of the presence of the aster yellows phytoplasma in the alfalfa crop. Vectors involved in transmission and the potential agronomic impacts of aster yellows phytoplasma in alfalfa are topics of current investigation. References: (1) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) A.-H. Khadhair et al. Microbiol. Res. 152:269, 1997. (3) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (4) Y.-P. Zhang et al. J. Virol. Methods 71:45, 1998.


2010 ◽  
Vol 158 (3) ◽  
pp. 197-199 ◽  
Author(s):  
Seralathan Kamala-Kannan ◽  
Seung-Moon Park ◽  
Byung-Taek OH ◽  
Hyung-Moo Kim ◽  
Kui-Jae Lee

2018 ◽  
Vol 100 (2) ◽  
pp. 327-327 ◽  
Author(s):  
Orsolya Viczián ◽  
Emese Kiss ◽  
Mária Szabó ◽  
Emese Mergenthaler

Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 635-635 ◽  
Author(s):  
R. Gao ◽  
J. Wang ◽  
X. D. Li ◽  
X. P. Zhu ◽  
G. Z. Tian

Bumald spirea (Spiarea bumalda Burv.) is an important ornamental tree widely grown in northern China. In August of 2006, spirea plants exhibiting symptoms of witches'-broom, stunting, yellowing, and shoot dieback were found at an incidence of 5 to 15% in Qingzhou City, Shandong Province, China. Total DNA was extracted separately from 0.1 g of phloem tissue from leaf midribs and stems of six symptomatic and six asymptomatic plants with a modified cetyltriethylammonium bromide (CTAB) method (3). Resulting DNA samples were analyzed for phytoplasma DNA by a nested PCR assay using phytoplasma universal 16S rDNA gene primer pairs R16mF2/R16mR1 and R16F2n/R16R2 (2). These primers amplified 1.5- and 1.2-kb products, respectively, from DNA of all symptomatic plants only. Restriction fragment length polymorphism (RFLP) analysis of the 1.2-kb 16S rDNA product using enzymes AluI, MseI, and HhaI indicated that all symptomatic plants contained a group 16SrI (aster yellows group) subgroup B (16SrI-B) phytoplasma strain (4). A 16S rDNA sequence derived from this strain (GenBank Accession No. EF176608) was most similar (99.8 and 99.6%) to those of severe aster yellows (GenBank Accession No. M86340) and Maryland aster yellows (GenBank Accession No. AF322644) phytoplasmas, respectively, thereby confirming strain identity based on RFLP analysis. A phytoplasma (Spiarea stunt phytoplasma, GenBank Accession No. AF190228), which belongs to X-disease group (16SrIII), was reported to infect spirea and probably be lethal to S. tomentosa in New York (1,4). The phytoplasma reported here shared low identity (90.8%) with Spiarea stunt phytoplasma, but also caused dieback of spirea shoots. The epidemiology and economic impact of this disease need further intensive investigation. To our knowledge, this is the first report of spirea witches'-broom disease and of its association with a subgroup 16SrI-B phytoplasma in China. References: (1) H. M. Griffiths et al. Can. J. Plant Pathol. 16:255, 1994. (2) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (3) Y. Qi et al. Biotechnol. Bull. 4:44, 2004. (4) The IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group. Int. J. Syst. Bacteriol. 54:1243, 2004.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1578-1578 ◽  
Author(s):  
D. Mollov ◽  
M. I. Chilvers ◽  
J. L. Jacobs

During the summer of 2012, soybean plants in a commercial field in Clinton County, Michigan, exhibited symptoms characteristic of phytoplasmal diseases (1,2). Symptoms included extensive top dieback, stunting, purple stem surfaces, internal necrosis, leaf vein discoloration, and bud proliferation. Approximately 80% of plants in a half hectare along the southern edge of the field were symptomatic, although the majority of plants in the 4-ha field appeared symptomless. Total genomic DNA was extracted from one symptomatic and one asymptomatic leaf sample using a Qiagen DNeasy Plant Mini Kit (Qiagen, Germantown, MD) according to manufacturer's instructions. The DNA was used as template in direct PCR primed by the phytoplasma-universal primers P1/P7 followed by nested PCR primed by P1/AYint (3). Reactions containing template DNA from the symptomatic plant yielded ribosomal RNA gene amplicons of 1.8 kbp (P1/P7-primed) and 1.6 kbp (P1/AYint-primed), respectively. Reactions containing template DNA from the asymptomatic plant or water did not yield amplicons. The products of PCRs primed by P1/P7 were purified using PureLink PCR Purification kit (Life Technologies, Carlsbad, CA) and cloned in a pGem T-Easy vector system (Promega, Madison, WI). Three separate clones were sequenced using the sequencing primers M13For, M13Rev, SAYF nt 755, (5′-AAAGCGTGGGGAGCAAACAG), and SAYR nt 1159, (5′-TTTGACGTCGTCCCCACCTT). The sequences of all three clones were identical. A consensus (Sequencher 4.1, Gene Codes Corporation, Ann Arbor, MI) nucleotide sequence of 1,830 bp was deposited in GenBank under the accession number KF528320. A BLASTn similarity search revealed that the sequence shared 100% identity to rDNA of aster yellows phytoplasma (AF222063). Additionally, analysis of the 16Sr group/subgroup classification, based on in silico RFLP analyses using iPhyClassifier (4), indicated that the soybean phytoplasma is a member of subgroup 16SrI-B aster yellows phytoplasma subgroup. In a phylogenic tree deduced using the neighbor joining algorithm, the phytoplasma consensus sequence obtained from soybean in Michigan clustered with other group 16SrI (aster yellows phytoplasma) strains. While aster yellows phytoplasma has been previously reported in soybean in Wisconsin (2), to our knowledge, this is the first report of aster yellows in soybean in Michigan. References: (1) C. R. Grau et al. Compendium of Soybean Diseases, 4th ed. G. L. Hartman et al., eds. American Phytopathological Society, St. Paul, MN, 1999. (2) M. E. Lee et al. Can. J. Plant Pathol. 24:125, 2002. (3) C. D. Smart et al. Appl. Env. Microbiol. 62:2988, 1996. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 373-373 ◽  
Author(s):  
M. Engelbrecht ◽  
J. Joubert ◽  
J. T. Burger

For many years phytoplasma diseases have caused serious losses in most of the major grape-growing regions of the world, except South Africa, where a mixed phytoplasma infection was first reported in 2006 (1). During the early growing season of 2006, symptoms consistent with phytoplasma disease were observed in vineyards in the Olifants River Valley. Symptoms included yellowing of leaves, incomplete lignification of shoots, shortening of internodes, and the abortion of growth tips and immature bunches. Symptomatic shoots and leaves from grapevine cultivars (Merlot, Shiraz, Cabernet Sauvignon, Ruby Cabernet, Pinotage, Corinth, Chardonnay, Columbar, Chenin blanc, Sauvignon blanc, Sultana, and Regal) were collected during the early growing season (November) of 2006, 2007, and 2008. Total DNA was extracted from 32 of these samples (from single plants in the same vineyards over the 3 years) with the Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) and tested by nested PCR using two universal primer pairs, P1/P7 and R16F2n/R16R2 (3). The first round of PCR of the 2006 samples yielded 1.8-kb fragments for 17 of the samples, while the nested PCR yielded an additional seven positive samples, confirming the necessity of nested PCR for reliable diagnosis. A similar trend was observed in the 2007 and 2008 PCR test results. All asymptomatic plants, which were included as negative controls, and water controls were negative by nested PCR. Twenty-four 1,245-bp amplicons, generated by nested PCR, were excised from gels, purified with a NucleoSpin Extract II Kit (Macherey-Nagel, Düren, Germany) and directly sequenced. Sequence data was compiled with the BioEdit Version 7.0.4.1 sequence alignment editor software (2), aligned using ClustalW Version 1.4 (4), and a consensus sequence was generated (GenBank Accession No. GQ365729). A BLAST search of the NCBI GenBank database using the individual sequences revealed high sequence identities (≥99%) with the aster yellows phytoplasma group (16SrI) and specifically with the subgroup 16SrI-B. In a comparison of the sequences of the 1.2-kb PCR fragments of 24 local samples with each other, sequence identities of ~99% were observed. These results clearly illustrate that all vines screened were infected with the same phytoplasma. Single nucleotide differences observed between different isolates may indicate the presence of closely related sequence variants of this phytoplasma. Aster yellows occurs worldwide and has been reported to infect grapevine–South Africa can now be added to this list. During the three seasons of our study, the area in which symptomatic vineyards were observed increased significantly, indicating spread by a biological vector. Moreover, infected vineyards were noticed in two other South African grape-growing regions. In contrast to the previous report, which reported a mixed infection of phytoplasmas of groups 16SrXII-A and 16SrII-B (1), PCR screening and sequencing of more than 40 individual samples from these areas confirmed these all to be infected with aster yellows phytoplasma only. To our knowledge, this is the first report of the detection and identification of an aster yellows phytoplasma causing grapevine yellows disease in South Africa. References: (1) S. Botti and A. Bertaccini. Plant Dis. 90:1360, 2006. (2) T. A. Hall. Nucleic Acids. Symp. Ser. 41:95, 1999. (3) I.-M. Lee et al. Phytopathology 83:834, 1993. (4) J. D. Thompson et al. Nucleic Acids Res. 22:4673, 1994.


2011 ◽  
Vol 159 (11-12) ◽  
pp. 799-801 ◽  
Author(s):  
Zhengnan Li ◽  
Lei Zhang ◽  
Ping Liu ◽  
Yaobo Bai ◽  
Yunfeng Wu

Sign in / Sign up

Export Citation Format

Share Document