scholarly journals Direct thrombin inhibitors, but not the direct factor Xa inhibitor rivaroxaban, increase tissue factor‐induced hypercoagulability in vitro and in vivo

2014 ◽  
Vol 12 (7) ◽  
pp. 1054-1065 ◽  
Author(s):  
E. Perzborn ◽  
S. Heitmeier ◽  
U. Buetehorn ◽  
V. Laux
2005 ◽  
Vol 3 (3) ◽  
pp. 514-521 ◽  
Author(s):  
E. PERZBORN ◽  
J. STRASSBURGER ◽  
A. WILMEN ◽  
J. POHLMANN ◽  
S. ROEHRIG ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1884-1884 ◽  
Author(s):  
Joanne van Ryn ◽  
Monika Kink-Eiband ◽  
Norbert Hauel ◽  
Henning Priepke ◽  
Wolfgang Wienen

Abstract Direct thrombin inhibitors (DTIs) have been shown to be very potent inhibitors of platelet function when platelets are activated with thrombin. This action does not occur by direct binding of the DTI to the platelet PAR-1/-4 receptor, but indirectly, by reducing thrombin concentrations and thereby reducing the interactions of thrombin with its receptor on the platelet. It was hypothesized that both thrombin and factor Xa inhibitors could inhibit platelet aggregation, if the stimulus to initiate aggregation was higher in the cascade than factor Xa, such as tissue factor. Thus, dabigatran, a DTI, and the direct factor Xa inhibitors, rivaroxaban and apixaban were tested. Free flowing whole blood (60 ml) was obtained from an antecubital vein using an 18 gauge needle from healthy human volunteers. Blood was collected in tubes containing 3.13% sodium citrate (1 in 10 dilution with whole blood). Blood was centrifuged at 200x g to obtain platelet rich plasma (PRP). Samples (300 μL PRP) were placed in a 6-channel aggregometer, equilibrated for 5 min at 37°C and calibrated with PPP from same individual (0–1 Volts). Photometric tracings were continuously digitally recorded over 5 min following the addition of tissue factor and curves were evaluated as AUC over this time interval. Each PRP sample was incubated with 2 mg/ml Pefabloc®FG (Gly-Pro-Arg-Pro) to prevent fibrin polymerisation, 5 mM CaCl2 and increasing concentrations of dabigatran or factor Xa inhibitor. Tissue factor stimulus (range, 5–27 μl of 10 ml Innovin solution) was tailored for each individual, so that the minimum concentration that resulted in maximum aggregation was used. As positive controls, aggregation was also performed after stimulating with ADP (10 μM), collagen (2 μg/ml), TRAP (20 μM) or ecarin (0.1 U/ml). All substances inhibited tissue factor-induced platelet aggregation in a concentration-dependent manner. Dabigatran was the most potent inhibitor of platelet aggregation among the substances tested, with an IC50 of 35 nM, rivaroxaban and then apixaban followed, with IC50s of 312 and 817 nM, respectively. All substances had no effect on platelet aggregation induced by ADP, collagen and TRAP. Dabigatran was a potent inhibitor of ecarin-induced platelet aggregation, while the factor Xa inhibitors had no effect, as expected from their mechanism of action. Thus, these studies demonstrate that both direct thrombin inhibitors (by inhibiting thrombin) and direct factor Xa inhibitors (by preventing thrombin generation) indirectly inhibit platelet aggregation, though dabigatran was more potent than rivaroxaban and apixaban under these experimental conditions. Thus, these substances may not only be effective in venous/stasis thrombotic episodes where fibrin formation plays an important role, but may also be effective in more platelet dominant, arterial thrombosis settings.


2011 ◽  
Vol 106 (12) ◽  
pp. 1076-1083 ◽  
Author(s):  
Nobutoshi Sugiyama ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
Taketoshi Furugohri

SummaryThere is increasing concern that some anticoagulants can paradoxically increase thrombogenesis under certain circumstances. Previously, we demonstrated that at certain doses a direct thrombin inhibitor, melag-atran, worsens the coagulation status induced by tissue factor (TF) in-jection in a rat model. We utilised an in vitro thrombin generation (TG) assay to determine if direct thrombin inhibitors could enhance TG in human plasma, and whether inhibition of the negative-feedback sys-tem [thrombin-thrombomodulin (TM)-protein C] contributed to the TG enhancement. TG in human plasma was assayed by means of the cali-brated automated thrombography. In this assay, direct factor Xa (FXa) inhibitors such as edoxaban and antithrombin (AT)-dependent anti-coagulants such as heparin did not increase, but simply suppressed TG. AT-independent thrombin inhibitors (melagatran, lepirudin, and active site blocked thrombin (IIai)) increased peak levels of TG (2.0, 1.6, and 2.2-fold, respectively) in the presence of 12 nM recombinant human soluble TM (rhsTM). Melagatran and lepirudin at higher concentrations began to suppress TG. In the absence of rhsTM, the enhancement of peak TG by melagatran decreased to 1.2-fold. Furthermore, in protein C-deficient plasma, AT-independent thrombin inhibitors failed to enhance TG. In addition, a human protein C neutralising antibody increased the peak height of TG in the presence of rhsTM. These results suggest that AT-independent thrombin inhibitors may activate throm-bogenesis by suppression of the thrombin-induced negative-feedback system through inhibition of protein C activation. In contrast, direct FXa inhibitors are more useful than AT-independent thrombin inhibitors in terms of lower possibility of activation of the coagulation pathway.


1990 ◽  
Vol 63 (02) ◽  
pp. 220-223 ◽  
Author(s):  
J Hauptmann ◽  
B Kaiser ◽  
G Nowak ◽  
J Stürzebecher ◽  
F Markwardt

SummaryThe anticoagulant effect of selected synthetic inhibitors of thrombin and factor Xa was studied in vitro in commonly used clotting assays. The concentrations of the compounds doubling the clotting time in the various assays were mainly dependent on their thrombin inhibitory activity. Factor Xa inhibitors were somewhat more effective in prolonging the prothrombin time compared to the activated partial thromboplastin time, whereas the opposite was true of thrombin inhibitors.In vivo, in a venous stasis thrombosis model and a thromboplastin-induced microthrombosis model in rats the thrombin inhibitors were effective antithrombotically whereas factor Xa inhibitors of numerically similar IQ value for the respective enzyme were not effective at equimolar dosageThe results are discussed in the light of the different prelequisiles and conditions for inhibition of thrombin and factor Xa in the course of blood clotting.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1248-1255 ◽  
Author(s):  
Krystin Krauel ◽  
Christine Hackbarth ◽  
Birgitt Fürll ◽  
Andreas Greinacher

Abstract Heparin is a widely used anticoagulant. Because of its negative charge, it forms complexes with positively charged platelet factor 4 (PF4). This can induce anti-PF4/heparin IgG Abs. Resulting immune complexes activate platelets, leading to the prothrombotic adverse drug reaction heparin-induced thrombocytopenia (HIT). HIT requires treatment with alternative anticoagulants. Approved for HIT are 2 direct thrombin inhibitors (DTI; lepirudin, argatroban) and danaparoid. They are niche products with limitations. We assessed the effects of the DTI dabigatran, the direct factor Xa-inhibitor rivaroxaban, and of 2-O, 3-O desulfated heparin (ODSH; a partially desulfated heparin with minimal anticoagulant effects) on PF4/heparin complexes and the interaction of anti-PF4/heparin Abs with platelets. Neither dabigatran nor rivaroxaban had any effect on the interaction of PF4 or anti-PF4/heparin Abs with platelets. In contrast, ODSH inhibited PF4 binding to gel-filtered platelets, displaced PF4 from a PF4-transfected cell line, displaced PF4/heparin complexes from platelet surfaces, and inhibited anti-PF4/heparin Ab binding to PF4/heparin complexes and subsequent platelet activation. Dabigatran and rivaroxaban seem to be options for alternative anticoagulation in patients with a history of HIT. ODSH prevents formation of immunogenic PF4/heparin complexes, and, when given together with heparin, may have the potential to reduce the risk for HIT during treatment with heparin.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


Sign in / Sign up

Export Citation Format

Share Document