scholarly journals Factor XI contributes to thrombin generation in the absence of factor XII

Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3082-3082 ◽  
Author(s):  
Anton Matafonov ◽  
Dmitri Kravtsov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
John P. Sheehan ◽  
...  

Abstract Factor XI (fXI) is the zymogen of a plasma protease (fXIa) that contributes to coagulation by activating factor IX. The mechanism by which fXI is converted to fXIa in plasma has been a topic of recent debate. When plasma is exposed to a charged surface, factor XII (fXII) is converted to fXIIa, which then activates fXI. The importance of this reaction to hemostasis in vivo is questionable, as fXII deficiency does not cause abnormal bleeding. This suggests that fXI can be activated by other proteases, with α-thrombin receiving considerable attention in this regard. Results from several laboratories support a model in which α-thrombin activates fXI to propagate coagulation. This notion has been challenged by a recent study that found no direct evidence of fXI activation by α-thrombin in plasma and that fXI activation during plasma preparation can give the false impression that fXI is activated independent of fXIIa. We developed two plasma systems to examine thrombin generation (measured by calibrated automated thrombography) in the absence of fXII, with due consideration to the possibility that traces of fXIa can affect results. In the first system, fXI deficient plasma is initially treated with corn trypsin inhibitor to neutralize fXIIa, and then supplemented with fXI treated previously with DFP to neutralize contaminating fXIa. The second system uses fXII deficient plasma, and endogenous fXI is neutralized with an antibody if a fXI deficient state is required. Coagulation is initiated in both systems by addition of Ca2+ with or without tissue factor (TF - <10 pM), α-thrombin (5 nM), or factor Xa (6 pM). In both systems, significant thrombin generation was detected only in the presence of fXI, and required TF, α-thrombin, or factor Xa. Ca2+ alone did not stimulate thrombin generation. Thrombin generation was detected in fXI deficient plasma stimulated with as little as 3.0 pM fXIa. However, only 0.3 pM fXIa was required to induce thrombin generation if fXI was present, indicating additional fXIa is generated after addition of the fXIa trigger. The fXI deficient plasma system was not reconstituted by fXI variants defective in factor IX activation, nor by a fXI variant that is activated poorly by α-thrombin but normally by fXIIa. The results support a model in which fXI is activated in plasma by thrombin, with fXIa subsequently contributing to additional thrombin generation through factor IX activation. α-thrombin generated early in these reactions could promote subsequent thrombin generation through activation of factors V and VIII, as well as conversion of fibrinogen to fibrin. These reactions involve interactions with anion binding exosite I (ABE-I) on α-thrombin. When thrombin with a dysfunctional ABE-I (β-thrombin or α-thrombin with ABE-I mutations) were tested in the plasma systems, fXI-dependent thrombin generation was actually greater, and occurred earlier, than in the same system stimulated with α-thrombin. Studies with purified proteins and SDS-PAGE showed that β-thrombin and the ABE-I mutants convert fXI to fXIa similarly to α-thrombin. α-thrombin was also able to activate fXI in the presence of the ABE-I blocking peptide hirugen. β-thrombin and the exosite I mutants may promote fXI-dependent thrombin generation in plasma better than α-thrombin because there is no competition from fibrinogen. The different behavior of α-thrombin compared to β-thrombin and the ABE-I mutants supports the broader concept that thrombin activates fXI in plasma, and indicates that fXI activation by thrombin does not require ABE-I. Natural products of prothrombin activation lacking ABE-I, such as β-thrombin, therefore, may contribute to factor XI activation in plasma.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Abstract Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


1999 ◽  
Vol 82 (12) ◽  
pp. 1652-1658 ◽  
Author(s):  
Egbert Kruithof ◽  
Vijay Kakkar ◽  
Florea Lupu ◽  
Cristina Lupu

SummaryTissue factor pathway inhibitor (TFPI), the major downregulator of the procoagulant activity of tissue factor (TF), is synthesised by endothelial cells (EC) and acutely released in vitro after thrombin stimulation. Expression of TF on EC and subsequent thrombin generation occurs in vivo during sepsis or malignancy, inducing disseminated intravascular coagulation (DIC). The present study investigates the changes in plasma TFPI in relation to markers of in vivo thrombin generation induced by injection of factor Xa (FXa)/phospholipids in baboons at dosages leading to partial (48%) or complete fibrinogen depletion. The plasma concentrations of thrombin-antithrombin III (TAT) and fibrinopeptide A (FpA), as markers of in vivo generation of thrombin, were strongly enhanced after injection of FXa/phospholipids. TFPI levels, whether measured as antigen or activity, increased significantly in both treatment groups within few minutes, and were dependent on the dose of FXa/phospholipids. Significant positive correlations between plasma levels of TFPI and of TAT or FpA were observed. Altogether, our results indicate that experimentally induced in vivo generation of thrombin causes the acute release of TFPI, high-lighting a possible novel function of thrombin in downregulation of the coagulation process, potentially relevant for the outcome of DIC.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

Abstract We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


2001 ◽  
Vol 85 (06) ◽  
pp. 1060-1065 ◽  
Author(s):  
Irene Keularts ◽  
Ariella Zivelin ◽  
Uri Seligsohn ◽  
H. Coenraad Hemker ◽  
Suzette Béguin

SummaryThrombin generation has been studied in the plasma of severely factor XI deficient patients under conditions in which contact activation did not play a role. In platelet-rich as well as platelet-poor plasma, thrombin generation was dependent upon the presence of factor XI at tissue factor concentrations of between 1 and 20 pg/ml i.e. ~ 0.01 to 0.20% of the concentration normally present in the thromboplastin time determination. The requirement for factor XI is low; significant thrombin generation was seen at 1% factor XI; at 10%, thrombin formation was nearly normalised. A suspension of normal platelets in severely factor XI deficient plasma did not increase thrombin generation. This implies that there is no significant factor XI activity carried by normal platelets, although the presence of factor XI and factor XI inhibitors in platelets cannot be ruled out.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2127-2127
Author(s):  
Henri M. H. Spronk ◽  
Sabine Wilhelm ◽  
Rene Van Oerle ◽  
Menno L. Knetsch ◽  
David Gailani ◽  
...  

Abstract Abstract 2127 Poster Board II-102 Background: The revised model of coagulation proposes that factor XI (FXI) can be activated by thrombin, which is generated upon activation of the tissue factor (TF) pathway. This concept, however, has not been tested in vivo. A recent study questioned the existence of this feedback loop and suggested that factor XII (FXII) is the sole activator of FXI. Here, we analyze the feedback activation of FXI in plasma and in genetically altered mice. Methods and results: Fluorescence-based assays indicated that particle-bound thrombin caused thrombin generation in plasma both in the absence of TF and in the presence of active site inhibited factor VIIa. Thrombin failed to activate FXII and thrombin generation was almost completely abolished by an anti-FXIa antibody and in FXI-deficient plasma. Surface bound thrombin induced complex formation of FXI, with its major inhibitor C1 inhibitor, even in FXII-deficient plasma in a time and dose dependent manner. To determine if thrombin-driven FXI activation is important for hemostasis in vivo we used TF deficient mice (low TF), which have severely reduced thrombin formation. Low TF mice were crossed with mice deficient in one of the intrinsic pathway proteases FXII, FXI, or FIX. Double deficiency in TF and either FIX or FXI resulted in the intrauterine death of embryos due to hemorrhage. In contrast low TF/FXII-null mice were viable and the bleeding phenotype was unchanged from low TF animals. Conclusions: Surface-bound thrombin, a model for fibrin clot-protected thrombin, generates thrombin in a FXI dependent manner, independently from FXII. In addition to corroborating an amplifying role of FXI in thrombin generation, we provide the first evidence that at low TF levels FXI is essential in generating a sufficient ambient level of thrombin to permit embryonic development. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document