Pre‐ and post‐fire architectural guilds of subtropical dune thicket species in the southeastern Cape Floristic Region

Author(s):  
Tiaan Strydom ◽  
B. Adriaan Grobler ◽  
Tineke Kraaij ◽  
Richard M. Cowling
2013 ◽  
Vol 17 (6) ◽  
pp. 1267-1274 ◽  
Author(s):  
Willem J. Augustyn ◽  
Bruce Anderson ◽  
Michael Stiller ◽  
Allan G. Ellis

2003 ◽  
Vol 112 (1-2) ◽  
pp. 291-297 ◽  
Author(s):  
Caroline M Gelderblom ◽  
Brian W van Wilgen ◽  
Jeanne L Nel ◽  
Trevor Sandwith ◽  
Mark Botha ◽  
...  

Phytotaxa ◽  
2017 ◽  
Vol 295 (1) ◽  
pp. 49
Author(s):  
ALUWANI A. TSHIILA ◽  
SAMSON B.M. CHIMPHANGO ◽  
JAN-ADRIAAN VILJOEN ◽  
A. MUTHAMA MUASYA

Unclear boundaries between species hinder identification in the field and in herbaria, especially in species groups that can only be distinguished on the basis of subtle morphological and ecological features. One such taxon is Ficinia indica, widespread in the Greater Cape Floristic Region, growing on deep sandy soils between sea level and 1000 m elevation. Within its range, several phylogenetically related and morphologically similar species co-occur or occupy distinct habitats. Studies in herbaria show species in the Ficinia indica complex to be largely misidentified based on the use of qualitative information. Here, we investigate whether the six taxa recognized, based on one or a few characters, are supported as distinct species based on multivariate analysis of macro-morphological data. Two of the taxa were mostly separated whereas the other four taxa overlapped in multivariate space, but all the taxa could be distinguished using a single or a combination of morphological and ecological characters. We uphold the four previously recognized taxa (Ficinia argyropus, F. elatior, F. indica, F. laevis) as species, describe two new species (F. arnoldii and F. montana), and provide a dichotomous key for their identification.


2021 ◽  
Author(s):  
Zaynab Shaik ◽  
Nicola Georgina Bergh ◽  
Bengt Oxelman ◽  
Anthony George Verboom

We applied species delimitation methods based on the Multi-Species Coalescent (MSC) model to 500+ loci derived from genotyping-by-sequencing on the South African Seriphium plumosum (Asteraceae) species complex. The loci were represented either as multiple sequence alignments or single nucleotide polymorphisms (SNPs), and analysed by the STACEY and Bayes Factor Delimitation (BFD)/SNAPP methods, respectively. Both methods supported species taxonomies where virtually all of the 32 sampled individuals, each representing its own geographical population, were identified as separate species. Computational efforts required to achieve adequate mixing of MCMC chains were considerable, and the species/minimal cluster trees identified similar strongly supported clades in replicate runs. The resolution was, however, higher in the STACEY trees than in the SNAPP trees, which is consistent with the higher information content of full sequences. The computational efficiency, measured as effective sample sizes of likelihood and posterior estimates per time unit, was consistently higher for STACEY. A random subset of 56 alignments had similar resolution to the 524-locus SNP data set. The STRUCTURE-like sparse Non-negative Matrix Factorisation (sNMF) method was applied to six individuals from each of 48 geographical populations and 28023 SNPs. Significantly fewer (13) clusters were identified as optimal by this analysis compared to the MSC methods. The sNMF clusters correspond closely to clades consistently supported by MSC methods, and showed evidence of admixture, especially in the western Cape Floristic Region. We discuss the significance of these findings, and conclude that it is important to a priori consider the kind of species one wants to identify when using genome-scale data, the assumptions behind the parametric models applied, and the potential consequences of model violations may have.


2017 ◽  
Vol 113 (9/10) ◽  
Author(s):  
Leif Petersen ◽  
Andrew M. Reid ◽  
Eugene J. Moll ◽  
Marc T. Hockings

Cape Town is a fast-growing cityscape in the Cape Floristic Region in South Africa with 24 formally protected conservation areas including the World Heritage Table Mountain National Park. These sites have been protected and managed as critical sites for local biodiversity, representing potentially one-third of all Cape Floristic Region flora species and 18% of South Africa’s plant diversity. Cape Town is also inhabited by a rapidly growing culturally and economically diverse citizenry with distinct and potentially conflicting perspectives on access to, and management of, local natural resources. In a qualitative study of 58 locally resident traditional healers of distinct cultural groups, we examined motivations underlying the generally illicit activity of harvesting of wild resources from Cape Town protected areas. Resource harvester motivations primarily link to local economic survival, health care and cultural links to particular resources and practices, ‘access for all’ outlooks, and wholesale profit-seeking perspectives. We describe these motivations, contrast them with the current formal, legal and institutional perspectives for biodiversity protection in the city, and propose managerial interventions that may improve sustainability of ongoing harvest activities.


Sign in / Sign up

Export Citation Format

Share Document