evolutionary response
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 92)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Dounia Saleh ◽  
Jun Chen ◽  
Jean‐Charles Leplé ◽  
Thibault Leroy ◽  
Laura Truffaut ◽  
...  

2021 ◽  
Author(s):  
Heer H. Mehta ◽  
David Ibarra ◽  
Christopher J. Marx ◽  
Craig R. Miller ◽  
Yousif Shamoo

AbstractCombination antimicrobial therapy has been considered a promising strategy to combat the evolution of antimicrobial resistance. Francisella tularensis is the causative agent of tularemia and in addition to being found in the nature, is recognized as a threat agent that requires vigilance. We investigated the evolutionary outcome of adapting the Live Vaccine Strain (LVS) of Francisella to two non-interacting drugs, ciprofloxacin and doxycycline, individually, sequentially, and in combination. Despite their individual efficacies and independence of mechanisms, evolution to the combination appeared to progress faster than evolution to the two drugs sequentially. We conducted a longitudinal mutational analysis of the populations evolving to the drug combination, genetically reconstructed the identified evolutionary pathway, and carried out biochemical validation. We discovered that, after the appearance of an initial weak generalist mutation (FupA/B), each successive mutation alternated between adaptation to one drug or the other. In combination, these mutations allowed the population to more efficiently ascend the fitness peak through a series of evolutionary switch-backs. Clonal interference, weak pleiotropy, and positive epistasis also contributed to combinatorial evolution. This finding suggests that, under some selection conditions, the use of non-interacting drug pairs as a treatment strategy may result in a more rapid ascent to multi-drug resistance and serves as a cautionary tale.Author summaryThe antimicrobial resistance crisis requires the use of novel treatment strategies to prevent or delay the emergence of resistance. Combinations of drugs offer one strategy to delay resistance, but the efficacy of such drug combinations depends on the evolutionary response of the organism. Using experimental evolution, we show that under some conditions, a potential drug combination does not delay the onset of resistance in bacteria responsible for causing tularemia, Francisella. In fact, they evolve resistance to the combination faster than when the two drugs are applied sequentially. This result is surprising and concerning: using this drug combination in a hospital setting could lead to simultaneous emergence of resistance to two antibiotics. Employing whole genome sequencing, we identified the molecular mechanism leading to evolution of resistance to the combination. The mechanism is similar to the switch-back route used by hikers while scaling steep mountains i.e., instead of simultaneously acquiring mutations conferring resistance to both drugs, the bacteria acquire mutations to each drug in alternating manner. Rather than scaling the steep mountain directly, the bacteria ascend the mountain by a series of evolutionary switch-backs to gain elevation and in doing so, they get to the top more efficiently.


2021 ◽  
Vol 8 (3) ◽  
pp. 32-35
Author(s):  
Fatima Ridha Safar ◽  
Abhishek Pradhan ◽  
A. R Shabaraya

The current challenges and crisis related to antibiotic use and its resistance are unique and differ from the past challenges, as there is a lot of novel pathogens involved in the emergence of antibiotics resistance. Antibiotic resistance has become a major concern and challenge, hindering the usage of antibiotics. Crisis of antibiotic resistance is the increasing global incidence of infectious diseases affecting human population making it untreatable with any known antibiotic or antimicrobial agent. Newer resistance mechanisms are emerging and spreading globally thereby, imposing a major threat to the treatment of common infectious diseases. This has consequently led to an increase in the morbidity and mortality rates and thereby the rise in cost of the treatment as well. The process of antibiotic resistance has become an evolutionary response due to factors like widespread, extensive, and unnecessary use of antibiotics and unavailability of newer drugs attributable to exigent regulatory requirements. The situation in developing countries is expected to worsen unless governments become more stable, major advances occur in standards of living, preventive measures and in providing adequate medical care. Comprehensive and coordinated efforts are required to minimize the pace of resistance by implement new policies, researches and pursue steps to manage crisis. Keywords: antibiotics, resistance, crisis micro-organisms.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Deng Wang ◽  
Jean Vannier ◽  
Cédric Aria ◽  
Jie Sun ◽  
Jian Han

Abstract Background The radiation of ecdysozoans (moulting animals) during the Cambrian gave rise to panarthropods and various groups of worms including scalidophorans, which played an important role in the elaboration of early marine ecosystems. Although most scalidophorans were infaunal burrowers travelling through soft sediment at the bottom of the sea, Selkirkia lived inside a tube. Results We explore the palaeobiology of these tubicolous worms, and more generally the origin and evolutionary significance of tube-dwelling in early animals, based on exceptionally preserved fossils from the early Cambrian Chengjiang Lagerstätte (Stage 3, China) including a new species, Selkirkia transita sp. nov. We find that the best phylogenetic model resolves Selkirkia as a stem-group priapulid. Selkirkia secreted a protective cuticular thickening, the tube, inside which it was able to move during at least part of its life. Partly based on measured growth patterns, we construe that this tube was separated from the trunk during a moulting process that has no direct equivalent in other scalidophorans. Although the ontogeny of Selkirkia is currently unknown, we hypothesize that its conical tube might have had the same ecological function and possibly even deep development origin as the lorica, a protective cuticular thickening found in larval priapulids and adult loriciferans. Selkirkia is seen as a semi-sedentary animal capable of very shallow incursions below the water/sediment interface, possibly for feeding or during the tube-secreting phase. Brachiopod epibionts previously reported from the Xiaoshiba Lagerstätte (ca. 514 Ma) also presumably occur in Selkirkia sinica from Chengjiang (ca. 518 Ma). Conclusions Our critical and model-based approach provides a new phylogenetic framework for Scalidophora, upon which to improve in order to study the evolution of morphological characters in this group. Tube-dwelling is likely to have offered Selkirkia better protection and anchoring to sediment and has developed simultaneously in other Cambrian animals such as hemichordates, annelids or panarthropods. Often lost in modern representatives in favour of active infaunal lifestyles, tube-dwelling can be regarded as an early evolutionary response of various metazoans to increasing environmental and biological pressure in Cambrian marine ecosystems.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009875
Author(s):  
Marco Fumasoni ◽  
Andrew W. Murray

In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules despite differences in genomic features, revealing a common evolutionary response to constitutive DNA replication stress.


2021 ◽  
Author(s):  
Jeanette Moss ◽  
Zachary Borthwick ◽  
Erik Wapstra ◽  
Geoffrey While

Global changes in temperature potentially influence sexual selection by restricting opportunities for activity. However, explicit tests of the behavioural mechanisms linking thermal variation to mating and reproductive performance are rare. We address this gap in a temperate lizard by combining social network analysis with molecular pedigree reconstruction in a large-scale thermal manipulation experiment. Populations exposed to a more restrictive (cooler) thermal regime presented fewer high activity days compared to populations exposed to a warmer regime. While plasticity in thermal activity responses masked overall differences in activity levels, prolonged restriction nevertheless affected the timing and consistency of male-female interactions. Less active females in the cool thermal regime were significantly less likely to reproduce, which subsequently limited male mating. Surprisingly, this did not correspond to a heightened intensity of sexual selection or shifts in the targets of sexual selection. Thus, populations facing thermal activity restriction may possess limited potential for evolutionary response.


Evolution ◽  
2021 ◽  
Author(s):  
Marta A. Santos ◽  
Ana Carromeu‐Santos ◽  
Ana S. Quina ◽  
Mauro Santos ◽  
Margarida Matos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wojciech Majewski ◽  
Maria Holzmann ◽  
Andrew J. Gooday ◽  
Aneta Majda ◽  
Tomasz Mamos ◽  
...  

AbstractThe Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7–5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Charlotte Evangelista ◽  
Julia Dupeu ◽  
Joakim Sandkjenn ◽  
Beatriz Diaz Pauli ◽  
Anders Herland ◽  
...  

Size-selective mortality due to harvesting is a threat to numerous exploited species, but how it affects the ecosystem remains largely unexplored. Here, we used a pond mesocosm experiment to assess how evolutionary responses to opposite size-selective mortality interacted with the environment (fish density and light intensity used as a proxy of resource availability) to modulate fish populations, prey community composition and ecosystem functions. We used medaka ( Oryzias latipes ) previously selected over 10 generations for small size (harvest-like selection; small-breeder line) or large size (large-breeder line), which displayed slow somatic growth and early maturity or fast somatic growth and late maturity, respectively. Large-breeder medaka produced more juveniles, which seemed to grow faster than small-breeder ones but only under high fish density. Additionally, large-breeder medaka had an increased impact on some benthic prey, suggesting expanded diet breadth and/or enhanced foraging abilities. As a consequence, increased light stimulated benthic algae biomass only in presence of large-breeder medaka, which were presumably better at controlling benthic grazers. Aggregated effect sizes at the community and ecosystem levels revealed that the ecological effects of medaka evolution were of similar magnitude to those induced by the environment and fish introduction. These findings indicate the important environmental dependency of evolutionary response to opposite size-selective mortality on higher levels of biological organizations.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vishwa Patel ◽  
Nishad Matange

Gene regulatory networks allow organisms to generate coordinated responses to environmental challenges. In bacteria, regulatory networks are re-wired and re-purposed during evolution, though the relationship between selection pressures and evolutionary change is poorly understood. In this study, we discover that the early evolutionary response of Escherichia coli to the antibiotic trimethoprim involves derepression of PhoPQ signaling, an Mg2+-sensitive two-component system, by inactivation of the MgrB feedback-regulatory protein. We report that derepression of PhoPQ confers trimethoprim-tolerance to E. coli by hitherto unrecognized transcriptional upregulation of dihydrofolate reductase (DHFR), target of trimethoprim. As a result, mutations in mgrB precede and facilitate the evolution of drug resistance. Using laboratory evolution, genome sequencing, and mutation re-construction, we show that populations of E. coli challenged with trimethoprim are faced with the evolutionary ‘choice’ of transitioning from tolerant to resistant by mutations in DHFR, or compensating for the fitness costs of PhoPQ derepression by inactivating the RpoS sigma factor, itself a PhoPQ-target. Outcomes at this evolutionary branch-point are determined by the strength of antibiotic selection, such that high pressures favor resistance, while low pressures favor cost compensation. Our results relate evolutionary changes in bacterial gene regulatory networks to strength of selection and provide mechanistic evidence to substantiate this link.


Sign in / Sign up

Export Citation Format

Share Document