biparental inheritance
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Tom M. Allison ◽  
Arunas L. Radzvilavicius ◽  
Damian K. Dowling

Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations.


Author(s):  
Fanny Rusman ◽  
Noelia Floridia-Yapur ◽  
Nicolás Tomasini ◽  
Patricio Diosque

Trypanosoma cruzi, as other kinetoplastids, has a complex mechanism of editing of mitochondrial mRNAs that requires guide RNAs (gRNAs) coded in DNA minicircles in the kinetoplast. There are many variations on this mechanism among species. mRNA editing and gRNA repertoires are almost unknown in T. cruzi. Here, gRNAs were inferred based on deep-sequenced minicircle hypervariable regions (mHVRs) and editing cascades were rebuilt in strains belonging to the six main T. cruzi lineages. Inferred gRNAs were clustered according to their sequence similarity to constitute gRNA classes. Extreme diversity of gRNA classes was observed, which implied highly divergent gRNA repertoires among different lineages, even within some lineages. In addition, a variable gRNA class redundancy (i.e., different gRNA classes editing the same mRNA region) was detected among strains. Some strains had upon four times more gRNA classes than others. Such variations in redundancy affected gRNA classes of all mRNAs in a concerted way, i.e., there are correlated variations in the number of gRNAs classes editing each mRNA. Interestingly, cascades were incomplete for components of the respiratory complex I in several strains. Finally, gRNA classes of different strains may potentially edit mitochondrial mRNAs from other lineages in the same way as they edit their own mitochondrial mRNAs, which is a prerequisite for biparental inheritance of minicircle in hybrids. We propose that genetic exchange and biparental inheritance of minicircles combined with minicircle drift due to (partial) random segregation of minicircles during kDNA replication is a suitable hypothesis to explain the divergences among strains and the high levels of gRNA redundancy in some strains. In addition, our results support that the complex I may not be required in some stages in the life cycle as previously shown and that linkage (in the same minicircle) of gRNAs that edit different mRNAs may prevent gRNA class lost in such stage.


Author(s):  
Alistair T. Pagnamenta ◽  
Wei Wei ◽  
Shamima Rahman ◽  
Patrick F. Chinnery

2021 ◽  
Vol 22 (5) ◽  
pp. 2278
Author(s):  
Bikash Shrestha ◽  
Lawrence E. Gilbert ◽  
Tracey A. Ruhlman ◽  
Robert K. Jansen

Plastid inheritance in angiosperms is presumed to be largely maternal, with the potential to inherit plastids biparentally estimated for about 20% of species. In Passiflora, maternal, paternal and biparental inheritance has been reported; however, these studies were limited in the number of crosses and progeny examined. To improve the understanding of plastid transmission in Passiflora, the progeny of 45 interspecific crosses were analyzed in the three subgenera: Passiflora, Decaloba and Astrophea. Plastid types were assessed following restriction digestion of PCR amplified plastid DNA in hybrid embryos, cotyledons and leaves at different developmental stages. Clade-specific patterns of inheritance were detected such that hybrid progeny from subgenera Passiflora and Astrophea predominantly inherited paternal plastids with occasional incidences of maternal inheritance, whereas subgenus Decaloba showed predominantly maternal and biparental inheritance. Biparental plastid inheritance was also detected in some hybrids from subgenus Passiflora. Heteroplasmy due to biparental inheritance was restricted to hybrid cotyledons and first leaves with a single parental plastid type detectable in mature plants. This indicates that in Passiflora, plastid retention at later stages of plant development may not reflect the plastid inheritance patterns in embryos. Passiflora exhibits diverse patterns of plastid inheritance, providing an excellent system to investigate underlying mechanisms in angiosperms.


2020 ◽  
Author(s):  
Arunas Radzvilavicius ◽  
Iain G. Johnston

AbstractSexual eukaryotes have diverse mechanisms preventing the biparental inheritance of mitochondria and plastids, and reducing the coexistence of dissimilar organelle DNA (heteroplasmy). Nevertheless, paternal leakage often occurs in plants, fungi, protists and animals, and this leaves the possibility that heteroplasmy can in some contexts be advantageous. Theoretical models developed in the past revealed that maternal inheritance improves selection against deleterious mitochondrial mutations, but none of them have explained the observed variation in the extent of paternal leakage. Here we show that paternal leakage regulated by nuclear loci can evolve to maintain advantageous organelle diversity in fluctuating environments. Strict maternal inheritance reduces organelle variance within the cell, but this loss of diversity can be detrimental when environments are shifting rapidly. Our model reveals that high levels of paternal leakage can evolve in these types of rapidly changing environments and that strict maternal inheritance evolves only when the environment is changing slowly.DataMatlab/Octave implementation of the model is available at Https://github.com/StochasticBiology/PaternalLeakageEvolution.


2020 ◽  
Vol 11 ◽  
Author(s):  
Floris C. Breman ◽  
Ronald C. Snijder ◽  
Joost W. Korver ◽  
Sieme Pelzer ◽  
Mireia Sancho-Such ◽  
...  

The genetics underlying Cyto-Nuclear Incompatibility (CNI) was studied in Pelargonium interspecific hybrids. We created hybrids of 12 closely related crop wild relatives (CWR) with the ornamental P. × hortorum. Ten of the resulting 12 (F1) interspecific hybrids segregate for chlorosis suggesting biparental plastid inheritance. The segregation ratios of the interspecific F2 populations show nuclear interactions of one, two, or three nuclear genes regulating plastid function dependent on the parents. We further validated that biparental inheritance of plastids is common in section Ciconium, using diagnostic PCR primers. Our results pave the way for using the diverse species from section Ciconium, each with its own set of characteristics, as novel sources of desired breeding traits for P. × hortorum cultivars.


2020 ◽  
Vol 114 (3) ◽  
pp. e433
Author(s):  
Hong Ma ◽  
Hayley Darby ◽  
Crystal Van Dyken ◽  
Aleksei Mikhalchenko ◽  
Nuria Marti-Gutierrez ◽  
...  

2020 ◽  
Vol 47 ◽  
pp. 102274 ◽  
Author(s):  
Antonio Salas ◽  
Sebastian Schönherr ◽  
Hans-Jürgen Bandelt ◽  
Alberto Gómez-Carballa ◽  
Hansi Weissensteiner

2020 ◽  
Author(s):  
Jesse Slone ◽  
Weiwei Zou ◽  
Shiyu Luo ◽  
Eric S Schmitt ◽  
Stella Maris Chen ◽  
...  

ABSTRACTWith very few exceptions, mitochondrial DNA (mtDNA) in humans is transmitted exclusively from mothers to their offspring, suggesting the presence of a strong evolutionary pressure favoring the exclusion of paternal mtDNA. We have recently shown strong evidence of paternal mtDNA transmission. In these rare situations, males exhibiting biparental mtDNA appear to be limited to transmitting just one of the mtDNA species to their offspring, while females possessing biparental mtDNA populations consistently transmit both populations to their offspring at a very similar heteroplasmy level. The precise biological and genetic factors underlying this unusual transmission event remain unclear. Here, we have examined heteroplasmy levels in various tissues among individuals with biparental inheritance. Our results indicate that individuals with biparental mtDNA have remarkable inter-tissue variability in heteroplasmy level. At the single-cell level, paternal mtDNA heteroplasmy in sperm varies dramatically, and many sperm possess only one of the two mtDNA populations originally in question. These results show a fundamental, parent-of-origin difference in how mtDNA molecules transmit and propagate. This helps explain how a single population of mtDNAs are transmitted from a father possessing two populations of mtDNA molecules, suggesting that some mtDNA populations may be favored over others when transmitted from the father.


2020 ◽  
Vol 14 (1) ◽  
pp. e0007770 ◽  
Author(s):  
Fanny Rusman ◽  
Noelia Floridia-Yapur ◽  
Paula G. Ragone ◽  
Patricio Diosque ◽  
Nicolás Tomasini

Sign in / Sign up

Export Citation Format

Share Document