scholarly journals Using adipose‐derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand?

2022 ◽  
Author(s):  
Agnieszka Mikłosz ◽  
Barbara Emilia Nikitiuk ◽  
Adrian Chabowski
2018 ◽  
Vol 19 (7) ◽  
pp. 2081 ◽  
Author(s):  
Christian Carpéné ◽  
Héctor Pejenaute ◽  
Raquel del Moral ◽  
Nathalie Boulet ◽  
Elizabeth Hijona ◽  
...  

Phenolic compounds are among the most investigated herbal remedies, as is especially the case for resveratrol. Many reports have shown its anti-aging properties and the ability to reduce obesity and diabetes induced by high-fat diet in mice. However, such beneficial effects hardly translate from animal models to humans. The scientific community has therefore tested whether other plant phenolic compounds may surpass the effects of resveratrol. In this regard, it has been reported that piceatannol reproduces in rodents the anti-obesity actions of its parent polyphenol. However, the capacity of piceatannol to inhibit adipocyte differentiation in humans has not been characterized so far. Here, we investigated whether piceatannol was antiadipogenic and antilipogenic in human preadipocytes. Human mesenchymal stem cells (hMSC), isolated from adipose tissues of lean and obese individuals, were differentiated into mature adipocytes with or without piceatannol, and their functions were explored. Fifty μM of piceatannol deeply limited synthesis/accumulation of lipids in both murine and hMSC-derived adipocytes. Interestingly, this phenomenon occurred irrespective of being added at the earlier or later stages of adipocyte differentiation. Moreover, piceatannol lowered glucose transport into adipocytes and decreased the expression of key elements of the lipogenic pathway (PPARγ, FAS, and GLUT4). Thus, the confirmation of the antiadipogenic properties of piceatanol in vitro warrants the realization of clinical studies for the application of this compound in the treatment of the metabolic complications associated with obesity.


2017 ◽  
Vol 312 (1) ◽  
pp. C83-C91 ◽  
Author(s):  
Sergio Perez-Diaz ◽  
Beatriz Garcia-Rodriguez ◽  
Yolanda Gonzalez-Irazabal ◽  
Monica Valero ◽  
Javier Lagos-Lizan ◽  
...  

Healthy expansion of human adipose tissue requires mesenchymal stem cells (hMSC) able to proliferate and differentiate into mature adipocytes. Hence, characterization of those factors that coordinate hMSC-to-adipocyte transition is of paramount importance to modulate the adipose tissue expansion. It has been previously reported that the adipogenic program of hMSC can be disrupted by upregulating caveolar proteins, and polymerase I and transcript release factor (PTRF) is an integral component of caveolae, highly expressed in adipose tissue. Here, we hypothesized that the role of PTRF in adipocyte functionality might stem from an effect on hMSC. To test this hypothesis, we isolated hMSC from the subcutaneous fat depot. We found an upregulated expression of the PTRF associated with decreased adipogenic potential of hMSC, likely due to the existence of senescent adipocyte precursors. Employing short hairpin RNA-based constructs to stably reduce PTRF, we were able to restore insulin sensitivity and reduced basal lipolysis and leptin levels in human adipocytes with high levels of PTRF. Additionally, we pinpointed the detrimental effect caused by PTRF on the adipose tissue to the existence of senescent adipocyte precursors unable to proliferate and differentiate into adipocytes. This study provides evidence that impaired adipocyte functionality can be corrected, at least partially, by PTRF downregulation and warrants further in vivo research in patients with dysfunctional adipose tissue to prevent metabolic complications.


2010 ◽  
Vol 30 (6) ◽  
pp. 455-455 ◽  
Author(s):  
Dongyan Shi ◽  
Dan Ma ◽  
Feiqing Dong ◽  
Chen Zong ◽  
Liyue Liu ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 373-373
Author(s):  
Trinity J. Bivalacqua ◽  
Mustafa F. Usta ◽  
Hunter C. Champion ◽  
Weiwen Deng ◽  
Philip J. Kadowitz ◽  
...  

2008 ◽  
Vol 68 (S 01) ◽  
Author(s):  
S Mohr ◽  
BC Portmann-Lanz ◽  
A Schoeberlein ◽  
R Sager ◽  
DV Surbek

2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
R Roy ◽  
M Kukucka ◽  
D Messroghli ◽  
A Brodarac ◽  
M Becher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document