scholarly journals Long range assembly of sequences helps to unravel the genome structure and small variation of the wheat‐ Haynaldia villosa translocated chromosome 6VS 6AL

Author(s):  
Liping Xing ◽  
Lu Yuan ◽  
Zengshuai Lv ◽  
Qiang Wang ◽  
Chunhong Yin ◽  
...  
2021 ◽  
Vol 20 (1) ◽  
pp. 1-15
Author(s):  
Qi Zhang ◽  
Zheng Xu ◽  
Yutong Lai

Abstract Hi-C experiments have become very popular for studying the 3D genome structure in recent years. Identification of long-range chromosomal interaction, i.e., peak detection, is crucial for Hi-C data analysis. But it remains a challenging task due to the inherent high dimensionality, sparsity and the over-dispersion of the Hi-C count data matrix. We propose EBHiC, an empirical Bayes approach for peak detection from Hi-C data. The proposed framework provides flexible over-dispersion modeling by explicitly including the “true” interaction intensities as latent variables. To implement the proposed peak identification method (via the empirical Bayes test), we estimate the overall distributions of the observed counts semiparametrically using a Smoothed Expectation Maximization algorithm, and the empirical null based on the zero assumption. We conducted extensive simulations to validate and evaluate the performance of our proposed approach and applied it to real datasets. Our results suggest that EBHiC can identify better peaks in terms of accuracy, biological interpretability, and the consistency across biological replicates. The source code is available on Github (https://github.com/QiZhangStat/EBHiC).


1987 ◽  
Vol 15 (15) ◽  
pp. 6197-6207 ◽  
Author(s):  
N. Fischel-Ghodsian ◽  
R.D. Nicholls ◽  
D.R. Higgs
Keyword(s):  

2018 ◽  
Author(s):  
Qi Zhang ◽  
Zheng Xu ◽  
Yutong Lai

Hi-C experiments have become very popular for studying the 3D genome structure in recent years. Identification of long-range chromosomal interaction, i.e., peak detection, is crucial for Hi-C data analysis. But it remains a challenging task due to the inherent high dimensionality, sparsity and the over-dispersion of the Hi-C count data matrix. We propose EBHiC, an empirical Bayes approach for peak detection from Hi-C data. The proposed framework provides flexible over-dispersion modeling by explicitly including the 'true' interaction intensities as latent variables. To implement the proposed peak identification method (via the empirical Bayes test), we estimate the overall distributions of the observed counts semiparametrically using a smoothed EM algorithm, and the empirical null by discrete curve fitting. We conducted extensive simulations to validate and evaluate the performance of our proposed approach and applied it to real datasets. Our results suggest that EBHiC can better identify peaks than Fit-Hi-C in terms of accuracy, biological interpretability, and the consistency across biological replicates.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 285 ◽  
Author(s):  
Lisa S Mathew ◽  
Manuel Spannagl ◽  
Ameena Al-Malki ◽  
Binu George ◽  
Maria F Torres ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qian Xiong ◽  
Yuxin Hu ◽  
Wenqi Lv ◽  
Qinghua Wang ◽  
Guoxiang Liu ◽  
...  

Abstract Background The order Oedogoniales within the single family Oedogoniaceae comprised of three genera, Oedogonium, Oedocladium, and Bulbochaete based on traditional morphological criteria. While several molecular phylogenetic studies have suggested that both Oedogonium and Oedocladium may not be monophyletic, broader taxon sampling and large amounts of molecular data acquisition could help to resolve the phylogeny and evolutionary problems of this order. This study determined five chloroplast (cp) genomes of Oedogonium species and aimed to provide further information on cp genome for a better understanding of the phylogenetic and evolutionary relationships of the order Oedogoniales. Results The five Oedogonium cp genomes showed typical quadripartite and circular structures, and were relatively conserved in their structure, gene synteny, and inverted repeats boundaries in general, except for small variation in genome sizes, AT contents, introns, and repeats. Phylogenetic analyses based on 54 cp protein-coding genes examined by maximum likelihood and Bayesian analyses using amino acid and nucleotide datasets indicated that both Oedocladium and Oedogonium are polyphyletic groups. A positively selected gene (psbA) was identified in the two Oedocladium species and the terrestrial Oedogonium species, indicating that terrestrial Oedogoniales taxa may have undergone adaptive evolution to adjust to the difference in light intensity between aquatic and terrestrial habitats. Conclusions Our results enrich the data on cp genomes of the genus Oedogonium. The availability of these cp genomes can help in understanding the cp genome characteristics and resolve phylogenetic and evolutionary relationships of the order Oedogoniales.


2021 ◽  
Author(s):  
xiong qian ◽  
Yuxin Hu ◽  
Wenqi Lv ◽  
Qinghua Wang ◽  
Guoxiang Liu ◽  
...  

Abstract BackgroundThe order Oedogoniales can be divided into three genera, Oedogonium, Oedocladium, and Bulbochaete based on traditional morphological criteria. While several molecular phylogenetic studies have suggested that both Oedogonium and Oedocladium may not be monophyletic, broader taxon sampling and large amounts of molecular data acquisition could help to resolve the phylogeny and evolutionary problems of this order. This study determined five chloroplast (cp) genomes of Oedogonium species and aimed to provide further information on cp genome for a better understanding of the phylogenetic and evolutionary relationships of the order Oedogoniales.ResultsThe five Oedogonium cp genomes showed typical quadripartite and circular structures, and were relatively conserved in their structure, gene synteny, and inverted repeats boundaries in general, except for small variation in genome sizes, AT contents, introns, and repeats. Phylogenetic analyses based on 54 cp protein-coding genes examined by maximum likelihood and Bayesian analyses using amino acid and nucleotide datasets indicated that both Oedocladium and Oedogonium are polyphyletic groups. A positively selected gene (psbA) was identified in the two Oedocladium species and the terrestrial Oedogonium species, indicating that terrestrial Oedogoniales taxa may have undergone adaptive evolution to adjust to the difference in light intensity between aquatic and terrestrial habitats.ConclusionsOur results enrich the data on cp genomes of the genus Oedogonium. The availability of these cp genomes can help in understanding the cp genome characteristics and resolve phylogenetic and evolutionary relationships of the order Oedogoniales.


Sign in / Sign up

Export Citation Format

Share Document