A role of the lateral prefrontal cortex in the congruency sequence effect revealed by transcranial direct current stimulation

2021 ◽  
Vol 58 (5) ◽  
Author(s):  
Nan Li ◽  
Ying Wang ◽  
Fang Jing ◽  
Rujing Zha ◽  
Zhengde Wei ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiujun Qiu ◽  
Xuejun Kong ◽  
Jihan Li ◽  
Jie Yang ◽  
Yiting Huang ◽  
...  

Recently, transcranial direct current stimulation (tDCS) has been applied to relieve symptoms in individuals with autism spectrum disorder (ASD). In this prospective, parallel, single-blinded, randomized study, we investigate the modulation effect of three-week tDCS treatment at the left dorsal lateral prefrontal cortex (DLPFC) in children with ASD. 47 children with ASD were enrolled, and 40 (20 in each group) completed the study. The primary outcomes are Childhood Autism Rating Scale (CARS), Aberrant Behavior Checklist (ABC), and the Repetitive Behavior Scale-Revised (RBS-R). We found that children with ASD can tolerate three-week tDCS treatment with no serious adverse events detected. A within-group comparison showed that real tDCS, but not sham tDCS, can significantly reduce the scores of CARS, Children’s Sleep Habits Questionnaire (CSHQ), and general impressions in CARS (15th item). Real tDCS produced significant score reduction in the CSHQ and in CARS general impressions when compared to the effects of sham tDCS. The pilot study suggests that three-week left DLPFC tDCS is well-tolerated and may hold potential in relieving some symptoms in children with ASD.


2019 ◽  
Author(s):  
Gauthier Denis ◽  
Raphael Zory ◽  
Rémi Radel

AbstractThe aim of this study was to clarify the role of the prefrontal cortex (PFC) in physical effort regulation. We hypothesized that the PFC would be progressively involved in physical endurance through the engagement of cognitive inhibition, which would be necessary to maintain effort by inhibiting fatigue-related cues. This hypothesis was examined using a double-blind, sham-controlled, within-subjects study (N = 20) using high-definition (HD) transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC). Participants had to maintain a knee extensor contraction at 30% of their maximal force while simultaneously performing an Eriksen flanker task to evaluate their inhibition performance during the task. Anodal stimulation of the dlPFC influenced response to the cognitive task during exercise, as seen by slower response times and better accuracy. However, it did not lead to any measureable improvement in cognitive inhibition and did not influence endurance time. There was no correlation between cognitive inhibition and the maintenance of physical effort. This result could be explained by some methodological limitations of our protocol, and we also provide alternative explanations for the contribution of the PFC in physical endurance.


Author(s):  
Kristin Prehn ◽  
Anja Skoglund ◽  
Tilo Strobach

AbstractSwitching between two or more tasks is a key component in our modern world. Task switching, however, requires time-consuming executive control processes and thus produces performance costs when compared to task repetitions. While executive control during task switching has been associated with activation in the lateral prefrontal cortex (lPFC), only few studies so far have investigated the causal relation between lPFC activation and task-switching performance by modulating lPFC activation. In these studies, the results of lPFC modulation were not conclusive or limited to the left lPFC. In the present study, we aimed to investigate the effect of non-invasive transcranial direct current stimulation [tDCS; anodal tDCS (1 mA, 20 min) vs. cathodal tDCS (1 mA, 20 min) vs. sham tDCS (1 mA, 30 s)] over the right inferior frontal junction on task-switching performance in a well-established task-switching paradigm. In response times, we found a significant effect of tDCS Condition (atDCS, ctDCS vs. sham) on task-switching costs, indicating the modulation of task-switching performance by tDCS. In addition, we found a task-unspecific tDCS Condition effect in the first experimental session, in which participants were least familiar with the task, indicating a general enhancement of task performance in both task repetitions and task-switching trials. Taken together, our study provides evidence that the right lPFC is involved in task switching as well as in general task processing. Further studies are needed to investigate whether these findings can be translated into clinically relevant improvement in older subjects or populations with executive function impairment.


Sign in / Sign up

Export Citation Format

Share Document