PLUG AND PLAY INNOSAT ACS SIMULATOR

2015 ◽  
Vol 76 (8) ◽  
Author(s):  
S. M. Sharun ◽  
M. Y. Mashor ◽  
Fadzilah Hashim

This research proposes a novel approach of satellite simulator design where the simulator will be in the form of both software and hardware. A software simulator will represent the satellite dynamics model, incorporating all the operating conditions of the satellite in orbit. The control algorithm for Attitude Control System (ACS) will be implemented on Rabbit Micro Controller (RCM4100) and the dynamics model of Innovative Satellite (InnoSAT) plant in PC have been tested using real-time hardware-in-loop-simulation (HILS) technique. The results that have been obtained show that the InnoSAT ACS simulator can produce as good result as MATLAB simulation for the InnoSAT plants. The MSE values that have been calculated also show that there are a close match between HILS and MATLAB simulation where the MSEs different value are small. From both results, it is enough to verify that the developed protocol working satisfyingly and seems to be possible to be implemented on the actual flight.

2022 ◽  
Vol 1215 (1) ◽  
pp. 012008
Author(s):  
I. A. Lomaka

Abstract The paper presents the formation of additional feedback in the loop of the attitude control system of a nanosatellite. Feedback is based on the assessment of the inertial characteristics of the nanosatellite. The influence of the accuracy of knowledge of the inertial characteristics of a nanosatellite on the formation of an optimal control law in the problem of reorientation was estimated. Statistical modelling has been carried out to assess the effectiveness of nanosatellite on-board sensors in the problem of identifying the inertial characteristics of a nanosatellite. Recommendations for the selection of sensor’s characteristics and time interval of data collection have been formulated.


Author(s):  
Ni Li ◽  
Paolo Arguelles ◽  
Kevin Chaput ◽  
Stephen L. Kenan ◽  
Salla Kim ◽  
...  

Solar sailing is a new satellite propulsion technology using radiation pressure exerted by sunlight on a large mirrored surface. Since it does not need propellants, it is increasingly being considered by both the European Space Agency and the National Aeronautics and Space Administration for future science missions. An attitude control system is essential for a sail craft to maintain a desired orientation. IKAROS, launched in 2010, practically proved the possibility of using a solar sail as a propulsion system. However, it also showed the current sail orientation system could change the attitude very slowly, about 1 degree per day. In contrast to the existing single solar sail design, a new distributed four-sail configuration is proposed in this paper and the coordinated motion of the four sails is used to control the attitude pointing of a satellite. The feasibility and efficiency of this proposed design were assessed and concluded that it is possible to steer a CubeSat up to 1 degree in 60 seconds for either the roll or pitch axes.


2017 ◽  
Vol 89 (3) ◽  
pp. 498-506
Author(s):  
Qiao Qiao ◽  
Jianping Yuan ◽  
Xin Ning

Purpose The purpose of this paper is to establish the dynamics model of a Z-folded PhoneSat considering hinge friction and to investigate the influence of disturbances, such as friction, stiffness asymmetry, deployment asynchronicity and initial disturbance angular velocity, on the attitude of PhoneSat during and after deployment. Design/methodology/approach For the Z-folded PhoneSat, the dynamics model considering hinge friction is established and the dynamics simulation is carried out. The effects of friction, stiffness asymmetry, deployment asynchronicity and initial disturbance angular velocity on the attitude motion of the PhoneSat are studied and the attitude motion regularities of the PhoneSat considering the disturbance factors mentioned above are discussed. Findings Friction has a main contribution to reducing the oscillation of attitude motion and damping out the residual oscillation, ultimately decreasing the deployment time. An increasing length of deployment time is required with the increasing stiffness asymmetry and time difference of asynchronous deployment, which also have slight disturbances on the attitude angle and angular velocity of PhoneSat after the deployment. The initial disturbance angular velocity in the direction of deployment would be proportionally weakened after the deployment, whereas initial disturbance angular velocity in other direction induces angular velocities of other axes, which dramatically enhances the complexity of attitude control. Originality/value The paper is a useful reference for engineering design of small satellites attitude control system.


Author(s):  
Siti Maryam Sharun ◽  
Mohd Yusoff Mashor ◽  
Norhayati Mohd Nazid ◽  
Sazali Yaacob ◽  
Wan Nurhadani Wan Jaafar

The current research focuses on the designing of an intelligent controller for the Attitude Control System (ACS) of the Innovative Satellite (InnoSAT). The InnoSAT mission is to demonstrate local innovative space technology amongst the institutions of higher learning in the space sector. In this study, an Adaptive Neuro-controller (ANC) based on the Hybrid Multi Layered Perceptron (HMLP) network has been developed. The Model Reference Adaptive Control (MRAC) system is used as a control scheme to control a time varying systems where the performance specifications are given in terms of a reference model. The Weighted Recursive Least Square (WRLS) algorithm will adjust the controller parameters to minimize error between the plant output and the model reference output. The objective of this paper is to analyse the time response and the tracking performance of the ANC based on the HMLP network and the ANC based on the standard MLP network for controlling an InnoSAT attitude. These controllers have been tested using an InnoSAT model with some variations in operating conditions such as varying gain, measurement noise and disturbance torques. The simulation results indicated that the the ANC based on the HMLP network is adequate to control satellite attitude and give better results than the ANC based on the MLP network.  


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document