THE RATE OF CONVERGENCE AND WEAKER CONVERGENT CONDITION FOR THE METHOD FOR FINDING THE LARGEST SINGULAR VALUE OF RECTANGULAR TENSORS

2016 ◽  
Vol 78 (6-5) ◽  
Author(s):  
Nur Fadhilah Ibrahim ◽  
Nurul Akmal Mohamed

The applications of real rectangular tensors, among others, including the strong ellipticity condition problem within solid mechanics, and the entanglement problem within quantum physics. A method was suggested by Zhou, Caccetta and Qi in 2013, as a means of calculating the largest singular value of a nonnegative rectangular tensor. In this paper, we show that the method converges under weak irreducibility condition, and that it has a Q-linear convergence.   

2020 ◽  
Vol 373 ◽  
pp. 124982 ◽  
Author(s):  
Weiyang Ding ◽  
Jinjie Liu ◽  
Liqun Qi ◽  
Hong Yan

2017 ◽  
Vol 63 (3) ◽  
pp. 504-515
Author(s):  
V Yu Salamatova ◽  
Yu V Vasilevskii

The condition of ellipticity of the equilibrium equation plays an important role for correct description of mechanical behavior of materials and is a necessary condition for new defining relationships. Earlier, new deformation measures were proposed to vanish correlations between the terms, that dramatically simplifies restoration of defining relationships from experimental data. One of these new deformation measures is based on the QR-expansion of deformation gradient. In this paper, we study the strong ellipticity condition for hyperelastic material using the QR-expansion of deformation gradient.


Author(s):  
Taisiya Sigaeva ◽  
Robert Mangan ◽  
Luigi Vergori ◽  
Michel Destrade ◽  
Les Sudak

We study what is clearly one of the most common modes of deformation found in nature, science and engineering, namely the large elastic bending of curved structures, as well as its inverse, unbending, which can be brought beyond complete straightening to turn into eversion. We find that the suggested mathematical solution to these problems always exists and is unique when the solid is modelled as a homogeneous, isotropic, incompressible hyperelastic material with a strain-energy satisfying the strong ellipticity condition. We also provide explicit asymptotic solutions for thin sectors. When the deformations are severe enough, the compressed side of the elastic material may buckle and wrinkles could then develop. We analyse, in detail, the onset of this instability for the Mooney–Rivlin strain energy, which covers the cases of the neo-Hookean model in exact nonlinear elasticity and of third-order elastic materials in weakly nonlinear elasticity. In particular, the associated theoretical and numerical treatment allows us to predict the number and wavelength of the wrinkles. Guided by experimental observations, we finally look at the development of creases, which we simulate through advanced finite-element computations. In some cases, the linearized analysis allows us to predict correctly the number and the wavelength of the creases, which turn out to occur only a few per cent of strain earlier than the wrinkles.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chong Wang ◽  
Gang Wang ◽  
Lixia Liu

<p style='text-indent:20px;'>In this paper, we establish sharp upper and lower bounds on the minimum <i>M</i>-eigenvalue via the extreme eigenvalue of the symmetric matrices extracted from elasticity <i>Z</i>-tensors without irreducible conditions. Based on the lower bound estimations for the minimum <i>M</i>-eigenvalue, we provide some checkable sufficient or necessary conditions for the strong ellipticity condition. Numerical examples are given to demonstrate the proposed results.</p>


2019 ◽  
Vol 576 ◽  
pp. 181-199 ◽  
Author(s):  
Hongmei Yao ◽  
Can Zhang ◽  
Lei Liu ◽  
Jiang Zhou ◽  
Changjiang Bu

2016 ◽  
Vol 14 (1) ◽  
pp. 925-933 ◽  
Author(s):  
Jianxing Zhao ◽  
Caili Sang

AbstractAn S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document