scholarly journals De Rham Cohomology and Hodge Decomposition For Quantum Groups

2001 ◽  
Vol 83 (3) ◽  
pp. 743-768 ◽  
Author(s):  
István Heckenberger ◽  
Axel Schüler
2019 ◽  
Vol 2019 (756) ◽  
pp. 101-149 ◽  
Author(s):  
Marius Crainic ◽  
Rui Loja Fernandes ◽  
David Martínez Torres

AbstractThis is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompasses several classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we establish some fundamental properties and constructions of PMCTs. For instance, we show that their Poisson cohomology behaves very much like the de Rham cohomology of a compact manifold (Hodge decomposition, non-degenerate Poincaré duality pairing, etc.) and that the Moser trick can be adapted to PMCTs. More important, we find unexpected connections between PMCTs and symplectic topology: PMCTs are related with the theory of Lagrangian fibrations and we exhibit a construction of a non-trivial PMCT related to a classical question on the topology of the orbits of a free symplectic circle action. In subsequent papers, we will establish deep connections between PMCTs and integral affine geometry, Hamiltonian G-spaces, foliation theory, orbifolds, Lie theory and symplectic gerbes.


1989 ◽  
Vol 22 (1) ◽  
pp. 249-272 ◽  
Author(s):  
Wiesław Sasin

Author(s):  
Federico Scavia

Abstract Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic $p>0$ . We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when $p=2$ .


2018 ◽  
Vol 154 (4) ◽  
pp. 850-882
Author(s):  
Yunqing Tang

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of$\ell$-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties. These families include geometrically simple abelian varieties of prime dimension that have non-trivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.


1998 ◽  
Vol 48 (5) ◽  
pp. 1379-1393 ◽  
Author(s):  
Robert F. Coleman

Sign in / Sign up

Export Citation Format

Share Document