poisson manifolds
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)



Author(s):  
Henrique Bursztyn ◽  
Inocencio Ortiz ◽  
Stefan Waldmann

Abstract We extend the notion of Morita equivalence of Poisson manifolds to the setting of formal Poisson structures, that is, formal power series of bivector fields $\pi =\pi _0 + \lambda \pi _1 +\cdots $ satisfying the Poisson integrability condition $[\pi ,\pi ]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi _0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products [ 5], our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.



2021 ◽  
Vol 3 (3) ◽  
pp. 571-588
Author(s):  
Masaki Kashiwara ◽  
Pierre Schapira


2020 ◽  
Vol 156 (10) ◽  
pp. 2111-2148
Author(s):  
Sergei Merkulov ◽  
Thomas Willwacher

We settle several fundamental questions about the theory of universal deformation quantization of Lie bialgebras by giving their complete classification up to homotopy equivalence. Moreover, we settle these questions in a greater generality: we give a complete classification of the associated universal formality maps. An important new technical ingredient introduced in this paper is a polydifferential endofunctor ${\mathcal {D}}$ in the category of augmented props with the property that for any representation of a prop ${\mathcal {P}}$ in a vector space $V$ the associated prop ${\mathcal {D}}{\mathcal {P}}$ admits an induced representation on the graded commutative algebra $\odot ^\bullet V$ given in terms of polydifferential operators. Applying this functor to the minimal resolution $\widehat {\mathcal {L}\textit{ieb}}_\infty$ of the genus completed prop $\widehat {\mathcal {L}\textit{ieb}}$ of Lie bialgebras we show that universal formality maps for quantizations of Lie bialgebras are in one-to-one correspondence with morphisms of dg props \[F: \mathcal{A}\textit{ssb}_\infty \longrightarrow {\mathcal{D}}\widehat{\mathcal{L}\textit{ieb}}_\infty \] satisfying certain boundary conditions, where $\mathcal {A}\textit{ssb}_\infty$ is a minimal resolution of the prop of associative bialgebras. We prove that the set of such formality morphisms is non-empty. The latter result is used in turn to give a short proof of the formality theorem for universal quantizations of arbitrary Lie bialgebras which says that for any Drinfeld associator $\mathfrak{A}$ there is an associated ${\mathcal {L}} ie_\infty$ quasi-isomorphism between the ${\mathcal {L}} ie_\infty$ algebras $\mathsf {Def}({\mathcal {A}} ss{\mathcal {B}}_\infty \rightarrow {\mathcal {E}} nd_{\odot ^\bullet V})$ and $\mathsf {Def}({\mathcal {L}} ie{\mathcal {B}}\rightarrow {\mathcal {E}} nd_V)$ controlling, respectively, deformations of the standard bialgebra structure in $\odot V$ and deformations of any given Lie bialgebra structure in $V$. We study the deformation complex of an arbitrary universal formality morphism $\mathsf {Def}(\mathcal {A}\textit{ssb}_\infty \stackrel {F}{\rightarrow } {\mathcal {D}}\widehat {\mathcal {L}\textit{ieb}}_\infty )$ and prove that it is quasi-isomorphic to the full (i.e. not necessary connected) version of the graph complex introduced Maxim Kontsevich in the context of the theory of deformation quantizations of Poisson manifolds. This result gives a complete classification of the set $\{F_\mathfrak{A}\}$ of gauge equivalence classes of universal Lie connected formality maps: it is a torsor over the Grothendieck–Teichmüller group $GRT=GRT_1\rtimes {\mathbb {K}}^*$ and can hence can be identified with the set $\{\mathfrak{A}\}$ of Drinfeld associators.



2020 ◽  
Vol 31 (03) ◽  
pp. 2050024 ◽  
Author(s):  
Luca Vitagliano ◽  
Aïssa Wade

In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special cases of holomorphic Jacobi manifolds. We show that holomorphic Jacobi structures yield a much richer framework than that of holomorphic Poisson structures. We also discuss the relationship between holomorphic Jacobi structures, generalized contact bundles and Jacobi–Nijenhuis structures.



2020 ◽  
Vol 68 ◽  
pp. 101576
Author(s):  
Zouhair Saassai




2020 ◽  
Vol 21 ◽  
pp. 138-148
Author(s):  
Jumpei Gohara ◽  
◽  
Yuji Hirota ◽  
Akifumi Sako
Keyword(s):  


2019 ◽  
Vol 2019 (756) ◽  
pp. 101-149 ◽  
Author(s):  
Marius Crainic ◽  
Rui Loja Fernandes ◽  
David Martínez Torres

AbstractThis is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompasses several classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we establish some fundamental properties and constructions of PMCTs. For instance, we show that their Poisson cohomology behaves very much like the de Rham cohomology of a compact manifold (Hodge decomposition, non-degenerate Poincaré duality pairing, etc.) and that the Moser trick can be adapted to PMCTs. More important, we find unexpected connections between PMCTs and symplectic topology: PMCTs are related with the theory of Lagrangian fibrations and we exhibit a construction of a non-trivial PMCT related to a classical question on the topology of the orbits of a free symplectic circle action. In subsequent papers, we will establish deep connections between PMCTs and integral affine geometry, Hamiltonian G-spaces, foliation theory, orbifolds, Lie theory and symplectic gerbes.



2019 ◽  
Vol 375 (3) ◽  
pp. 1717-1760 ◽  
Author(s):  
Ruggero Bandiera ◽  
Zhuo Chen ◽  
Mathieu Stiénon ◽  
Ping Xu
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document