scholarly journals Classification of finite-dimensional irreducible modules over -algebras

2014 ◽  
Vol 150 (6) ◽  
pp. 1024-1076 ◽  
Author(s):  
Ivan Losev ◽  
Victor Ostrik

AbstractFinite $W$-algebras are certain associative algebras arising in Lie theory. Each $W$-algebra is constructed from a pair of a semisimple Lie algebra ${\mathfrak{g}}$ (our base field is algebraically closed and of characteristic 0) and its nilpotent element $e$. In this paper we classify finite-dimensional irreducible modules with integral central character over $W$-algebras. In more detail, in a previous paper the first author proved that the component group $A(e)$ of the centralizer of the nilpotent element under consideration acts on the set of finite-dimensional irreducible modules over the $W$-algebra and the quotient set is naturally identified with the set of primitive ideals in $U({\mathfrak{g}})$ whose associated variety is the closure of the adjoint orbit of $e$. In this paper, for a given primitive ideal with integral central character, we compute the corresponding $A(e)$-orbit. The answer is that the stabilizer of that orbit is basically a subgroup of $A(e)$ introduced by G. Lusztig. In the proof we use a variety of different ingredients: the structure theory of primitive ideals and Harish-Chandra bimodules for semisimple Lie algebras, the representation theory of $W$-algebras, the structure theory of cells and Springer representations, and multi-fusion monoidal categories.

1966 ◽  
Vol 27 (2) ◽  
pp. 531-542 ◽  
Author(s):  
G. Hochschild ◽  
G. D. Mostow

Let G be a complex analytic group, and let A be the representation space of a finite-dimensional complex analytic representation of G. We consider the cohomology for G in A, such as would be obtained in the usual way from the complex of holomorphic cochains for G in A. Actually, we shall use a more conceptual categorical definition, which is equivalent to the explicit one by cochains. In the context of finite-dimensional representation theory, nothing substantial is lost by assuming that G is a linear group. Under this assumption, it is the main purpose of this paper to relate the holomorphic cohomology of G to Lie algebra cohomology, and to the rational cohomology, in the sense of [1], of algebraic hulls of G. This is accomplished by using the known structure theory for complex analytic linear groups in combination with certain easily established results concerning the cohomology of semidirect products. The main results are Theorem 4.1 (whose hypothesis is always satisfied by a complex analytic linear group) and Theorems 5.1 and 5.2. These last two theorems show that the usual abundantly used connections between complex analytic representations of complex analytic groups and rational representations of algebraic groups extend fully to the superstructure of cohomology.


2018 ◽  
Vol 62 (1) ◽  
pp. 291-304
Author(s):  
Dave Benson ◽  
Zinovy Reichstein

AbstractWe examine situations, where representations of a finite-dimensionalF-algebraAdefined over a separable extension fieldK/F, have a unique minimal field of definition. Here the base fieldFis assumed to be a field of dimension ≼1. In particular,Fcould be a finite field ork(t) ork((t)), wherekis algebraically closed. We show that a unique minimal field of definition exists if (a)K/Fis an algebraic extension or (b)Ais of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension ofF. This is not the case ifAis of infinite representation type orFfails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.


1963 ◽  
Vol 15 ◽  
pp. 285-290 ◽  
Author(s):  
Earl J. Taft

Let A be a finite-dimensional associative algebra over a field F. Let R denote the radical of A. Assume that A/R is separable. Then it is well known (the Wedderburn principal theorem) that A possesses a Wedderburn decomposition A = S + R (semi-direct), where S is a separable subalgebra isomorphic with A/R. We call S a Wedderburn factor of A.


1994 ◽  
Vol 37 (3) ◽  
pp. 477-482 ◽  
Author(s):  
T. J. Hodges ◽  
M. P. Holland

Let D be the factor of the enveloping algebra of a semisimple Lie algebra by its minimal primitive ideal with trival central character. We give a geometric description of the Chern character ch: K0(D)→HC0(D) and the state (of the maximal ideal m) s: K0(D)→K0(D/m) = ℤ in terms of the Euler characteristic χ:K0()→ℤ, where is the associated flag variety.


Sign in / Sign up

Export Citation Format

Share Document