scholarly journals Equivariant -theory of Grassmannians II: the Knutson–Vakil conjecture

2017 ◽  
Vol 153 (4) ◽  
pp. 667-677 ◽  
Author(s):  
Oliver Pechenik ◽  
Alexander Yong

In 2005, Knutson–Vakil conjectured apuzzlerule for equivariant$K$-theory of Grassmannians. We resolve this conjecture. After giving a correction, we establish a modified rule by combinatorially connecting it to the authors’ recently proved tableau rule for the same Schubert calculus problem.

2017 ◽  
Vol 5 ◽  
Author(s):  
OLIVER PECHENIK ◽  
ALEXANDER YONG

We address a unification of the Schubert calculus problems solved by Buch [A Littlewood–Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), 37–78] and Knutson and Tao [Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J.119(2) (2003), 221–260]. That is, we prove a combinatorial rule for the structure coefficients in the torus-equivariant $K$-theory of Grassmannians with respect to the basis of Schubert structure sheaves. This rule is positive in the sense of Anderson et al. [Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, J. Eur. Math. Soc.13 (2011), 57–84] and in a stronger form. Our work is based on the combinatorics of genomic tableaux and a generalization of Schützenberger’s [Combinatoire et représentation du groupe symétrique, in Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Mathematics, 579 (Springer, Berlin, 1977), 59–113] jeu de taquin. Using our rule, we deduce the two other combinatorial rules for these coefficients. The first is a conjecture of Thomas and Yong [Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) (2013), to appear]. The second (found in a sequel to this paper) is a puzzle rule, resolving a conjecture of Knutson and Vakil from 2005.


2000 ◽  
Vol 584 (3) ◽  
pp. 795-809 ◽  
Author(s):  
S.E. Irvine ◽  
M.A. Walton
Keyword(s):  

1996 ◽  
Vol 34 (3) ◽  
pp. 813-832 ◽  
Author(s):  
M. S. Ravi ◽  
Joachim Rosenthal ◽  
Xiaochang Wang

2014 ◽  
Vol 150 (7) ◽  
pp. 1196-1234 ◽  
Author(s):  
Nora Ganter

AbstractWe calculate equivariant elliptic cohomology of the partial flag variety$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G/H$, where$H\subseteq G$are compact connected Lie groups of equal rank. We identify the${\rm RO}(G)$-graded coefficients${\mathcal{E}} ll_G^*$as powers of Looijenga’s line bundle and prove that transfer along the map$$\begin{equation*} \pi \,{:}\,G/H\longrightarrow {\rm pt} \end{equation*}$$is calculated by the Weyl–Kac character formula. Treating ordinary cohomology,$K$-theory and elliptic cohomology in parallel, this paper organizes the theoretical framework for the elliptic Schubert calculus of [N. Ganter and A. Ram,Elliptic Schubert calculus, in preparation].


2010 ◽  
Vol 53 (1) ◽  
pp. 171-186 ◽  
Author(s):  
Hugh Thomas ◽  
Alexander Yong

AbstractMultiplicity-free algebraic geometry is the study of subvarieties Y ⊆ X with the “smallest invariants” as witnessed by a multiplicity-free Chow ring decomposition of [Y] ∈ A*(X) into a predetermined linear basis.This paper concerns the case of Richardson subvarieties of the Grassmannian in terms of the Schubert basis. We give a nonrecursive combinatorial classification of multiplicity-free Richardson varieties, i.e., we classify multiplicity-free products of Schubert classes. This answers a question of W. Fulton.


2009 ◽  
Vol 7 (4) ◽  
pp. 449-473 ◽  
Author(s):  
Rebecca F. Goldin ◽  
Susan Tolman
Keyword(s):  

2016 ◽  
Vol 217 (1) ◽  
pp. 177-193 ◽  
Author(s):  
Evgeny Mukhin ◽  
Vitaly Tarasov

Sign in / Sign up

Export Citation Format

Share Document