weyl character formula
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2017 ◽  
Author(s):  
Ichio Kikuchi ◽  
Akihito Kikuchi

This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold-way model, and the usage of Weyl character formula (in order to construct weight modules, and to count correctly the degeneracy


10.37236/4732 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Vineet Gupta ◽  
Uma Roy ◽  
Roger Van Peski

A theorem due to Tokuyama expresses Schur polynomials in terms of Gelfand-Tsetlin patterns, providing a deformation of the Weyl character formula and two other classical results, Stanley's formula for the Schur $q$-polynomials and Gelfand's parametrization for the Schur polynomials. We generalize Tokuyama's formula to the Hall-Littlewood polynomials by extending Tokuyama's statistics. Our result, in addition to specializing to Tokuyama's result and the aforementioned classical results, also yields connections to the monomial symmetric function and a new deformation of Stanley's formula.


2014 ◽  
Vol 150 (7) ◽  
pp. 1196-1234 ◽  
Author(s):  
Nora Ganter

AbstractWe calculate equivariant elliptic cohomology of the partial flag variety$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G/H$, where$H\subseteq G$are compact connected Lie groups of equal rank. We identify the${\rm RO}(G)$-graded coefficients${\mathcal{E}} ll_G^*$as powers of Looijenga’s line bundle and prove that transfer along the map$$\begin{equation*} \pi \,{:}\,G/H\longrightarrow {\rm pt} \end{equation*}$$is calculated by the Weyl–Kac character formula. Treating ordinary cohomology,$K$-theory and elliptic cohomology in parallel, this paper organizes the theoretical framework for the elliptic Schubert calculus of [N. Ganter and A. Ram,Elliptic Schubert calculus, in preparation].


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization constant. The λ‎-parts of Whittaker coefficients of Eisenstein series can be profitably regarded as a deformation of the numerator in the Weyl character formula. This leads to deformations of the Weyl character formula. Tokuyama gave such a deformation. It is an expression of ssubscript Greek small letter lamda(z) as a ratio of a numerator to a denominator. The denominator is a deformation of the Weyl denominator, and the numerator is a sum over Gelfand-Tsetlin patterns with top row λ‎ + ρ‎.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes the properties of Kashiwara's crystal and its role in unipotent p-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic import over the maximal unipotent subgroup of a p-adic group can be replaced by a sum over Kashiwara's crystal. Partly motivated by the crystal description presented in Chapter 2 of this book, this perspective was advocated by Bump and Nakasuji. Later work by McNamara and Kim and Lee extended this philosophy yet further. Indeed, McNamara shows that the computation of the metaplectic Whittaker function is initially given as a sum over Kashiwara's crystal. The chapter considers Kostant's generating function, the character of the quantized enveloping algebra, and its association with Kashiwara's crystal, along with the Kostant partition function and the Weyl character formula.


2010 ◽  
Vol 17 (3) ◽  
pp. 507-527 ◽  
Author(s):  
Megumi Harada ◽  
Gregory D. Landweber ◽  
Reyer Sjamaar

10.37236/1781 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgia Benkart ◽  
Oliver Eng

Special weight labelings on Aztec diamond graphs lead to sum-product identities through a recursive formula of Kuo. The weight assigned to each perfect matching of the graph is a Laurent monomial, and the identities in these monomials combine to give Weyl's character formula for the representation with highest weight $\rho$ (the half sum of the positive roots) for the classical Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document