scholarly journals The Manin constant in the semistable case

2018 ◽  
Vol 154 (9) ◽  
pp. 1889-1920 ◽  
Author(s):  
Kęstutis Česnavičius

For an optimal modular parametrization $J_{0}(n){\twoheadrightarrow}E$ of an elliptic curve $E$ over $\mathbb{Q}$ of conductor $n$, Manin conjectured the agreement of two natural $\mathbb{Z}$-lattices in the $\mathbb{Q}$-vector space $H^{0}(E,\unicode[STIX]{x1D6FA}^{1})$. Multiple authors generalized his conjecture to higher-dimensional newform quotients. We prove the Manin conjecture for semistable $E$, give counterexamples to all the proposed generalizations, and prove several semistable special cases of these generalizations. The proofs establish general relations between the integral $p$-adic étale and de Rham cohomologies of abelian varieties over $p$-adic fields and exhibit a new exactness result for Néron models.

2018 ◽  
Vol 154 (5) ◽  
pp. 934-959 ◽  
Author(s):  
Bruce W. Jordan ◽  
Allan G. Keeton ◽  
Bjorn Poonen ◽  
Eric M. Rains ◽  
Nicholas Shepherd-Barron ◽  
...  

Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.


2019 ◽  
Vol 15 (09) ◽  
pp. 1801-1826 ◽  
Author(s):  
David Holmes

In 1983, Silverman and Tate showed that the set of points in a 1-dimensional family of abelian varieties where a section of infinite order has “small height” is finite. We conjecture a generalization to higher-dimensional families, where we replace “finite” by “not Zariski dense.” We show that this conjecture would imply the uniform boundedness conjecture for torsion points on abelian varieties. We then prove a few special cases of this new conjecture.


2016 ◽  
Vol 68 (6) ◽  
pp. 1362-1381
Author(s):  
Mihran Papikian ◽  
Joseph Rabinoff

AbstractLet J be a Jacobian variety with toric reduction over a local field K. Let J → E be an optimal quotient defined over K, where E is an elliptic curve. We give examples in which the functorially induced map on component groups of the Néron models is not surjective. This answers a question of Ribet and Takahashi. We also give various criteria under which is surjective and discuss when these criteria hold for the Jacobians of modular curves.


2018 ◽  
Vol 154 (4) ◽  
pp. 850-882
Author(s):  
Yunqing Tang

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of$\ell$-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties. These families include geometrically simple abelian varieties of prime dimension that have non-trivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.


2000 ◽  
Vol 7 (5) ◽  
pp. 605-614
Author(s):  
Minhyong Kim ◽  
Susan H. Marshall
Keyword(s):  

10.37236/6516 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Megumi Asada ◽  
Ryan Chen ◽  
Florian Frick ◽  
Frederick Huang ◽  
Maxwell Polevy ◽  
...  

Reay's relaxed Tverberg conjecture and Conway's thrackle conjecture are open problems about the geometry of pairwise intersections. Reay asked for the minimum number of points in Euclidean $d$-space that guarantees any such point set admits a partition into $r$ parts, any $k$ of whose convex hulls intersect. Here we give new and improved lower bounds for this number, which Reay conjectured to be independent of $k$. We prove a colored version of Reay's conjecture for $k$ sufficiently large, but nevertheless $k$ independent of dimension $d$. Pairwise intersecting convex hulls have severely restricted combinatorics. This is a higher-dimensional analogue of Conway's thrackle conjecture or its linear special case. We thus study convex-geometric and higher-dimensional analogues of the thrackle conjecture alongside Reay's problem and conjecture (and prove in two special cases) that the number of convex sets in the plane is bounded by the total number of vertices they involve whenever there exists a transversal set for their pairwise intersections. We thus isolate a geometric property that leads to bounds as in the thrackle conjecture. We also establish tight bounds for the number of facets of higher-dimensional analogues of linear thrackles and conjecture their continuous generalizations.


2017 ◽  
Vol 3 (2) ◽  
pp. 171-198
Author(s):  
Dino Lorenzini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document