Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball

2019 ◽  
Vol 155 (11) ◽  
pp. 2129-2149
Author(s):  
Ngaiming Mok

We prove the analogue of the Ax–Lindemann–Weierstrass theorem for not necessarily arithmetic lattices of the automorphism group of the complex unit ball $\mathbb{B}^{n}$ using methods of several complex variables, algebraic geometry and Kähler geometry. Consider a torsion-free lattice $\unicode[STIX]{x1D6E4}\,\subset \,\text{Aut}(\mathbb{B}^{n})$ and the associated uniformization map $\unicode[STIX]{x1D70B}:\mathbb{B}^{n}\rightarrow \mathbb{B}^{n}/\unicode[STIX]{x1D6E4}=:X_{\unicode[STIX]{x1D6E4}}$. Given an algebraic subset $S\,\subset \,\mathbb{B}^{n}$ and writing $Z$ for the Zariski closure of $\unicode[STIX]{x1D70B}(S)$ in $X_{\unicode[STIX]{x1D6E4}}$ (which is equipped with a canonical quasi-projective structure), in some precise sense we realize $Z$ as a variety uniruled by images of algebraic subsets under the uniformization map, and study the asymptotic geometry of an irreducible component $\widetilde{Z}$ of $\unicode[STIX]{x1D70B}^{-1}(Z)$ as $\widetilde{Z}$ exits the boundary $\unicode[STIX]{x2202}\mathbb{B}^{n}$ by exploiting the strict pseudoconvexity of $\mathbb{B}^{n}$, culminating in the proof that $\widetilde{Z}\,\subset \,\mathbb{B}^{n}$ is totally geodesic. Our methodology sets the stage for tackling problems in functional transcendence theory for arbitrary lattices of $\text{ Aut}(\unicode[STIX]{x1D6FA})$ for (possibly reducible) bounded symmetric domains $\unicode[STIX]{x1D6FA}$.


1987 ◽  
Vol 29 (2) ◽  
pp. 229-236
Author(s):  
Tomasz M. Wolniewicz

Let Bn denote the unit ball and Un the unit polydisc in Cn. In this paper we consider questions concerned with inner functions and embeddings of Hardy spaces over bounded symmetric domains. The main result (Theorem 2) states that for a classical symmetric domain D of type I and rank(D) = s, there exists an isometric embedding of Hl(Us) onto a complemented subspace of Hl(D). This should be compared with results of Wojtaszczyk [13] and Bourgain [3, 4] which state that H1(Bn) is isomorphic to Hl(U) while for n>m, Hl(Un) cannot be isomorphically embedded onto a complemented subspace of H1(Um). Since balls are the only bounded symmetric domains of rank 1 and they are of type I, Theorem 2 shows that if rank(D1) = 1, rank(D2) > 1 then H1(D1) is not isomorphic to H1(D2). It is natural to expect this to hold always when rank(D1 ≠ rank(D2) but unfortunately we were not able to prove this.



1981 ◽  
Vol 33 (5) ◽  
pp. 1157-1164 ◽  
Author(s):  
Clinton J. Kolaski

1.1. The isometries of the Hardy spaces Hp(0 < p < ∞, p ≠ 2) of the unit disc were determined by Forelli in [2]. Generalizations to several variables: For the polydisc the isometries of Hp onto itself were characterized by Schneider [9]. For the unit ball the case p > 2 was then done by Forelli [3]; Rudin [8] removed the restriction p > 2 by proving a theorem on equimeasurability. Finally, Koranyi and Vagi [6] noted that the methods developed by Forelli, Rudin and Schneider applied to bounded symmetric domains.In this note it will be shown that their methods also apply to the Bergman spaces over bounded Runge domains. The isometries which are onto are completely characterized; the special cases of the ball and polydisc are particularly nice and are given separately.



2013 ◽  
Vol 15 (02) ◽  
pp. 1250060 ◽  
Author(s):  
GUEO GRANTCHAROV ◽  
MISHA VERBITSKY

We describe a family of calibrations arising naturally on a hyper-Kähler manifold M. These calibrations calibrate the holomorphic Lagrangian, holomorphic isotropic and holomorphic coisotropic subvarieties. When M is an HKT (hyper-Kähler with torsion) manifold with holonomy SL (n, ℍ), we construct another family of calibrations Φi, which calibrates holomorphic Lagrangian and holomorphic coisotropic subvarieties. The calibrations Φi are (generally speaking) not parallel with respect to any torsion-free connection on M.





1976 ◽  
Vol 28 (2) ◽  
pp. 334-340 ◽  
Author(s):  
Adam Korányi ◽  
Stephen Vági

The isometries of the Hardy spaces Hv (0 < p < ∞, p ≠ 2) of the unit disc were determined by Forelli in 1964 [3]. For p = 1 the result had been found earlier by deLeeuw, Rudin and Wermer [2]. For several variables the state of affairs at present is this: For the polydisc the isometries of Hp onto itself have been characterized by Schneider [13]. For the unit ball the same result was proved in the case p > 2 by Forelli [4]. Finally in [12] Rudin removed the restriction p > 2 and also established some results about isometries of Hp of the ball and the polydisc into itself.



2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Ricky Villeta ◽  
Keyword(s):  


1970 ◽  
Vol 30 ◽  
pp. 32-40
Author(s):  
Sujoy Charaborty ◽  
Akhil Chandra Paul
Keyword(s):  

By introducing the notions of k-homomorphism, anti-k-homomorphism and Jordan khomomorphism of Nobusawa Γ -rings, we establish some significant results related to these concepts. If M1 is a Nobusawa Γ1 -ring and M2 is a 2-torsion free completely prime Nobusawa Γ2 -ring, then we prove that every Jordan k-homomorphism θ of M1 onto M2 such that k(Γ1 ) = Γ2 is either a k-homomorphism or an anti-k-homomorphism. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 32-40 DOI: http://dx.doi.org/10.3329/ganit.v30i0.8500  





2020 ◽  
Vol 27 (1) ◽  
pp. 43-47
Author(s):  
Karol Pryszczepko
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document