THE CLASSIFICATION OF THE FINITE SIMPLE GROUPS Volume 2, Part I, Chapter G: General Group Theory (Mathematical Surveys and Monographs 40)

1997 ◽  
Vol 29 (4) ◽  
pp. 509-510
Author(s):  
Martin W. Liebeck
2012 ◽  
Vol 430-432 ◽  
pp. 1265-1268
Author(s):  
Xiao Qiang Guo ◽  
Zheng Jun He

Since the classification of finite simple groups completed last century, the applications of group theory are more and more widely. We first introduce the connection of groups and symmetry. And then we respectively introduce the applications of group theory in polynomial equation, algebraic topology, algebraic geometry , cryptography, algebraic number theory, physics and chemistry.


2020 ◽  
Vol 23 (6) ◽  
pp. 999-1016
Author(s):  
Anatoly S. Kondrat’ev ◽  
Natalia V. Maslova ◽  
Danila O. Revin

AbstractA subgroup H of a group G is said to be pronormal in G if H and {H^{g}} are conjugate in {\langle H,H^{g}\rangle} for every {g\in G}. In this paper, we determine the finite simple groups of type {E_{6}(q)} and {{}^{2}E_{6}(q)} in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.


Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).


Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


2003 ◽  
Vol 171 ◽  
pp. 197-206
Author(s):  
Inna Korchagina

AbstractThis paper is a contribution to the “revision” project of Gorenstein, Lyons and Solomon, whose goal is to produce a unified proof of the Classification of Finite Simple Groups.


2004 ◽  
Author(s):  
Daniel Gorenstein ◽  
Richard Lyons ◽  
Ronald Solomon

2011 ◽  
Author(s):  
Michael Aschbacher ◽  
Richard Lyons ◽  
Stephen Smith ◽  
Ronald Solomon

2018 ◽  
Author(s):  
Daniel Gorenstein ◽  
Richard Lyons ◽  
Ronald Solomon

2018 ◽  
Vol 15 (04) ◽  
pp. 1850060
Author(s):  
Koen Thas

Nearly every known pair of isospectral but nonisometric manifolds — with as most famous members isospectral bounded [Formula: see text]-planar domains which makes one “not hear the shape of a drum” [M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73(4 part 2) (1966) 1–23] — arise from the (group theoretical) Gassmann–Sunada method. Moreover, all the known [Formula: see text]-planar examples (so counter examples to Kac’s question) are constructed through a famous specialization of this method, called transplantation. We first describe a number of very general classes of length equivalent manifolds, with as particular cases isospectral manifolds, in each of the constructions starting from a given example that arises itself from the Gassmann–Sunada method. The constructions include the examples arising from the transplantation technique (and thus in particular the known planar examples). To that end, we introduce four properties — called FF, MAX, PAIR and INV — inspired by natural physical properties (which rule out trivial constructions), that are satisfied for each of the known planar examples. Vice versa, we show that length equivalent manifolds with FF, MAX, PAIR and INV which arise from the Gassmann–Sunada method, must fall under one of our prior constructions, thus describing a precise classification of these objects. Due to the nature of our constructions and properties, a deep connection with finite simple groups occurs which seems, perhaps, rather surprising in the context of this paper. On the other hand, our properties define in some sense physically irreducible pairs of length equivalent manifolds — “atoms” of general pairs of length equivalent manifolds, in that such a general pair of manifolds is patched up out of irreducible pairs — and that is precisely what simple groups are for general groups.


Sign in / Sign up

Export Citation Format

Share Document