scholarly journals Constructing supersingular elliptic curves with a given endomorphism ring

2014 ◽  
Vol 17 (A) ◽  
pp. 71-91 ◽  
Author(s):  
Ilya Chevyrev ◽  
Steven D. Galbraith

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.

2014 ◽  
Vol 17 (A) ◽  
pp. 418-432 ◽  
Author(s):  
David Kohel ◽  
Kristin Lauter ◽  
Christophe Petit ◽  
Jean-Pierre Tignol

AbstractLet $\mathcal{O}$ be a maximal order in a definite quaternion algebra over $\mathbb{Q}$ of prime discriminant $p$, and $\ell $ a small prime. We describe a probabilistic algorithm which, for a given left $\mathcal{O}$-ideal, computes a representative in its left ideal class of $\ell $-power norm. In practice the algorithm is efficient and, subject to heuristics on expected distributions of primes, runs in expected polynomial time. This solves the underlying problem for a quaternion analog of the Charles–Goren–Lauter hash function, and has security implications for the original CGL construction in terms of supersingular elliptic curves.


2018 ◽  
Vol 2020 (24) ◽  
pp. 10005-10041 ◽  
Author(s):  
Yuri Bilu ◽  
Philipp Habegger ◽  
Lars Kühne

Abstract A result of the 2nd-named author states that there are only finitely many complex multiplication (CM)-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke’s equidistribution theorem and is hence noneffective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted arguments, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in ${\mathbb{C}}^n$ not containing any special points.


2014 ◽  
Vol 915-916 ◽  
pp. 1336-1340
Author(s):  
Jian Jun Hu

The Complex Multiplication (CM) method is a widely used technique for constructing elliptic curves over finite fields. The key point in this method is parameter generation of the elliptic curve and root compution of a special type of class polynomials. However, there are several class polynomials which can be used in the CM method, having much smaller coefficients, and fulfilling the prerequisite that their roots can be easily transformed to the roots of the corresponding Hilbert polynomials.In this paper, we provide a method which can construct elliptic curves by Ramanujan's class invariants. We described the algorithm for the construction of elliptic curves (ECs) over imaginary quadratic field and given the transformation from their roots to the roots of the corresponding Hilbert polynomials. We compared the efficiency in the use of this method and other methods.


2017 ◽  
Vol 2017 (732) ◽  
pp. 211-246 ◽  
Author(s):  
Janko Böhm ◽  
Kathrin Bringmann ◽  
Arne Buchholz ◽  
Hannah Markwig

Abstract Mirror symmetry relates Gromov–Witten invariants of an elliptic curve with certain integrals over Feynman graphs [10]. We prove a tropical generalization of mirror symmetry for elliptic curves, i.e., a statement relating certain labeled Gromov–Witten invariants of a tropical elliptic curve to more refined Feynman integrals. This result easily implies the tropical analogue of the mirror symmetry statement mentioned above and, using the necessary Correspondence Theorem, also the mirror symmetry statement itself. In this way, our tropical generalization leads to an alternative proof of mirror symmetry for elliptic curves. We believe that our approach via tropical mirror symmetry naturally carries the potential of being generalized to more adventurous situations of mirror symmetry. Moreover, our tropical approach has the advantage that all involved invariants are easy to compute. Furthermore, we can use the techniques for computing Feynman integrals to prove that they are quasimodular forms. Also, as a side product, we can give a combinatorial characterization of Feynman graphs for which the corresponding integrals are zero. More generally, the tropical mirror symmetry theorem gives a natural interpretation of the A-model side (i.e., the generating function of Gromov–Witten invariants) in terms of a sum over Feynman graphs. Hence our quasimodularity result becomes meaningful on the A-model side as well. Our theoretical results are complemented by a Singular package including several procedures that can be used to compute Hurwitz numbers of the elliptic curve as integrals over Feynman graphs.


2012 ◽  
Vol 15 ◽  
pp. 317-325 ◽  
Author(s):  
Andrew V. Sutherland

AbstractGiven an elliptic curve E over a field of positive characteristic p, we consider how to efficiently determine whether E is ordinary or supersingular. We analyze the complexity of several existing algorithms and then present a new approach that exploits structural differences between ordinary and supersingular isogeny graphs. This yields a simple algorithm that, given E and a suitable non-residue in 𝔽p2, determines the supersingularity of E in O(n3log 2n) time and O(n) space, where n=O(log p) . Both these complexity bounds are significant improvements over existing methods, as we demonstrate with some practical computations.


2017 ◽  
Vol 13 (05) ◽  
pp. 1317-1333
Author(s):  
Florence Gillibert

A theorem of Mazur gives the set of possible prime degrees for rational isogenies between elliptic curves. In this paper, we are working on a similar problem in the case of abelian surfaces of [Formula: see text]-type over [Formula: see text] with quaternionic multiplication (over [Formula: see text]) endowed with a [Formula: see text] level structure. We prove the following result: for a fixed indefinite quaternion algebra [Formula: see text] of discriminant [Formula: see text] and a fixed quadratic imaginary field [Formula: see text], there exists an effective bound [Formula: see text] such that for a prime number [Formula: see text], not dividing the conductor of the order [Formula: see text], there do not exist abelian surfaces [Formula: see text] such that [Formula: see text] is a maximal order of [Formula: see text] and [Formula: see text] is endowed with a [Formula: see text] level structure.


2016 ◽  
Vol 12 (01) ◽  
pp. 237-248 ◽  
Author(s):  
Tommaso Giorgio Centeleghe

Let [Formula: see text] be an elliptic curve over a finite field [Formula: see text], and [Formula: see text] a prime number different from the characteristic of [Formula: see text]. In this paper, we consider the problem of finding the structure of the Tate module [Formula: see text] as an integral Galois representations of [Formula: see text]. We indicate an explicit procedure to solve this problem starting from the characteristic polynomial [Formula: see text] and the [Formula: see text]-invariant [Formula: see text] of [Formula: see text]. Hilbert Class Polynomials of imaginary quadratic orders play an important role here. We give a global application to the study of prime-splitting in torsion fields of elliptic curves over number fields.


2006 ◽  
Vol 9 ◽  
pp. 64-85 ◽  
Author(s):  
R. Granger ◽  
D. Page ◽  
M. Stam

The value ot the late pairing on an elliptic curve over a finite field may be viewed as an element of an algebraic torus. Using this simple observation, we transfer techniques recently developed for torus-based cryptography to pairing-based cryptography, resulting in more efficient computations, and lower bandwidth requirements. To illustrate the efficacy of this approach, we apply the method to pairings on supersingular elliptic curves in characteristic three.


2021 ◽  
Vol 15 (1) ◽  
pp. 454-464
Author(s):  
Guanju Xiao ◽  
Lixia Luo ◽  
Yingpu Deng

Abstract Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽 p 2 , if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O, we construct loops or cycles in the supersingular L-isogeny graph at the vertices which are next to j(E) in the supersingular ℓ-isogeny graph where ℓ is a prime different from L. Next, we discuss the lengths of these cycles especially for j(E) = 1728 and 0. Finally, we also determine an upper bound on primes p for which there are unexpected 2-cycles if ℓ doesn’t split in O.


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


Sign in / Sign up

Export Citation Format

Share Document