Surface abéliennes à multiplication quaternionique munie d'une structure de niveau Γ0(N)

2017 ◽  
Vol 13 (05) ◽  
pp. 1317-1333
Author(s):  
Florence Gillibert

A theorem of Mazur gives the set of possible prime degrees for rational isogenies between elliptic curves. In this paper, we are working on a similar problem in the case of abelian surfaces of [Formula: see text]-type over [Formula: see text] with quaternionic multiplication (over [Formula: see text]) endowed with a [Formula: see text] level structure. We prove the following result: for a fixed indefinite quaternion algebra [Formula: see text] of discriminant [Formula: see text] and a fixed quadratic imaginary field [Formula: see text], there exists an effective bound [Formula: see text] such that for a prime number [Formula: see text], not dividing the conductor of the order [Formula: see text], there do not exist abelian surfaces [Formula: see text] such that [Formula: see text] is a maximal order of [Formula: see text] and [Formula: see text] is endowed with a [Formula: see text] level structure.

2014 ◽  
Vol 17 (A) ◽  
pp. 71-91 ◽  
Author(s):  
Ilya Chevyrev ◽  
Steven D. Galbraith

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.


2014 ◽  
Vol 17 (A) ◽  
pp. 418-432 ◽  
Author(s):  
David Kohel ◽  
Kristin Lauter ◽  
Christophe Petit ◽  
Jean-Pierre Tignol

AbstractLet $\mathcal{O}$ be a maximal order in a definite quaternion algebra over $\mathbb{Q}$ of prime discriminant $p$, and $\ell $ a small prime. We describe a probabilistic algorithm which, for a given left $\mathcal{O}$-ideal, computes a representative in its left ideal class of $\ell $-power norm. In practice the algorithm is efficient and, subject to heuristics on expected distributions of primes, runs in expected polynomial time. This solves the underlying problem for a quaternion analog of the Charles–Goren–Lauter hash function, and has security implications for the original CGL construction in terms of supersingular elliptic curves.


1984 ◽  
Vol 96 ◽  
pp. 139-165 ◽  
Author(s):  
Fumiyuki Momose

Let p be a prime number and k an algebraic number field of finite degree d. Manin [14] showed that there exists an integer n = n(k,p) (≧0) which satisfies the condition


2019 ◽  
Vol 18 (04) ◽  
pp. 1950070
Author(s):  
Ali Mahmoudifar

It is proved that some finite simple groups are quasirecognizable by prime graph. In [A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups [Formula: see text] and [Formula: see text], J. Algebra Appl. 14(1) (2015) 12pp], the authors proved that if [Formula: see text] is a prime number and [Formula: see text], then there exists a natural number [Formula: see text] such that for all [Formula: see text], the simple group [Formula: see text] (where [Formula: see text] is a linear or unitary simple group) is quasirecognizable by prime graph. Also[Formula: see text] in that paper[Formula: see text] the author posed the following conjecture: Conjecture. For every prime power [Formula: see text] there exists a natural number [Formula: see text] such that for all [Formula: see text] the simple group [Formula: see text] is quasirecognizable by prime graph. In this paper [Formula: see text] as the main theorem we prove that if [Formula: see text] is a prime power and satisfies some especial conditions [Formula: see text] then there exists a number [Formula: see text] associated to [Formula: see text] such that for all [Formula: see text] the finite linear simple group [Formula: see text] is quasirecognizable by prime graph. Finally [Formula: see text] by a calculation via a computer program [Formula: see text] we conclude that the above conjecture is valid for the simple group [Formula: see text] where [Formula: see text] [Formula: see text] is an odd number and [Formula: see text].


2020 ◽  
pp. 2150116
Author(s):  
Cheng-Cheng Zhou ◽  
Xing Lü ◽  
Hai-Tao Xu

Based on the prime number [Formula: see text], a generalized (3+1)-dimensional Kadomtsev-Petviashvili (KP)-type equation is proposed, where the bilinear operators are redefined through introducing some prime number. Computerized symbolic computation provides a powerful tool to solve the generalized (3+1)-dimensional KP-type equation, and some exact solutions are obtained including lump-type solution and interaction solution. With numerical simulation, three-dimensional plots, density plots, and two-dimensional curves are given for particular choices of the involved parameters in the solutions to show the evolutionary characteristics.


2019 ◽  
Vol 15 (01) ◽  
pp. 89-103
Author(s):  
Mohamed Ayad ◽  
Rachid Bouchenna ◽  
Omar Kihel

Let [Formula: see text] be a number field of degree [Formula: see text] over [Formula: see text] and [Formula: see text] its ring of integers. For a prime number [Formula: see text], we determine the types of splittings of [Formula: see text] in [Formula: see text] for which the set [Formula: see text] is of cardinality a power of [Formula: see text]. We prove that this necessary condition is also sufficient for [Formula: see text] to be a subgroup of the additive group [Formula: see text]. Consequently, we show that, in this case, the subset of [Formula: see text], [Formula: see text] is an order of the number field.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Seungsang Oh ◽  
Kyungpyo Hong ◽  
Ho Lee ◽  
Hwa Jeong Lee ◽  
Mi Jeong Yeon

Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot [Formula: see text]-mosaic is an [Formula: see text] matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper, we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot [Formula: see text]-mosaics for any positive integers [Formula: see text] and [Formula: see text], toroidal knot [Formula: see text]-mosaics for co-prime integers [Formula: see text] and [Formula: see text], and furthermore toroidal knot [Formula: see text]-mosaics for a prime number [Formula: see text]. We also analyze the asymptotics of the growth rates of their cardinality.


2017 ◽  
Vol 16 (06) ◽  
pp. 1750104 ◽  
Author(s):  
Jingcheng Dong ◽  
Libin Li ◽  
Li Dai

We study integral almost square-free modular categories; i.e., integral modular categories of Frobenius–Perron dimension [Formula: see text], where [Formula: see text] is a prime number, [Formula: see text] is a square-free natural number and [Formula: see text]. We prove that, if [Formula: see text] or [Formula: see text] is prime with [Formula: see text], then they are group-theoretical. This generalizes several results in the literature and gives a partial answer to the question posed by the first author and Tucker. As an application, we prove that an integral modular category whose Frobenius–Perron dimension is odd and less than [Formula: see text] is group-theoretical.


Sign in / Sign up

Export Citation Format

Share Document