scholarly journals Tropical mirror symmetry for elliptic curves

2017 ◽  
Vol 2017 (732) ◽  
pp. 211-246 ◽  
Author(s):  
Janko Böhm ◽  
Kathrin Bringmann ◽  
Arne Buchholz ◽  
Hannah Markwig

Abstract Mirror symmetry relates Gromov–Witten invariants of an elliptic curve with certain integrals over Feynman graphs [10]. We prove a tropical generalization of mirror symmetry for elliptic curves, i.e., a statement relating certain labeled Gromov–Witten invariants of a tropical elliptic curve to more refined Feynman integrals. This result easily implies the tropical analogue of the mirror symmetry statement mentioned above and, using the necessary Correspondence Theorem, also the mirror symmetry statement itself. In this way, our tropical generalization leads to an alternative proof of mirror symmetry for elliptic curves. We believe that our approach via tropical mirror symmetry naturally carries the potential of being generalized to more adventurous situations of mirror symmetry. Moreover, our tropical approach has the advantage that all involved invariants are easy to compute. Furthermore, we can use the techniques for computing Feynman integrals to prove that they are quasimodular forms. Also, as a side product, we can give a combinatorial characterization of Feynman graphs for which the corresponding integrals are zero. More generally, the tropical mirror symmetry theorem gives a natural interpretation of the A-model side (i.e., the generating function of Gromov–Witten invariants) in terms of a sum over Feynman graphs. Hence our quasimodularity result becomes meaningful on the A-model side as well. Our theoretical results are complemented by a Singular package including several procedures that can be used to compute Hurwitz numbers of the elliptic curve as integrals over Feynman graphs.

2014 ◽  
Vol 17 (A) ◽  
pp. 71-91 ◽  
Author(s):  
Ilya Chevyrev ◽  
Steven D. Galbraith

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.


2021 ◽  
Vol 56 (1) ◽  
pp. 47-61
Author(s):  
Enrique González-Jiménez ◽  

In a series of papers we classify the possible torsion structures of rational elliptic curves base-extended to number fields of a fixed degree. In this paper we turn our attention to the question of how the torsion of an elliptic curve with complex multiplication defined over the rationals grows over quadratic fields. We go further and we give an explicit characterization of the quadratic fields where the torsion grows in terms of some invariants attached to the curve.


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2020 ◽  
Vol 14 (1) ◽  
pp. 339-345
Author(s):  
Taechan Kim ◽  
Mehdi Tibouchi

AbstractIn a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can be informally stated as follows: given an elliptic curve E over 𝔽q in Weierstrass form and a large subgroup H ⊂ E(𝔽q) generated by G(xG, yG), the points in E(𝔽q) whose x-coordinates are obtained from xG by randomly flipping a fixed, sufficiently long substring of bits (and rejecting cases when the resulting value does not correspond to a point in E(𝔽q)) are close to uniformly distributed among the cosets modulo H. The goal of this note is to formally state, prove and quantify (a variant of) that property, and in particular establish sufficient bounds on the size of the subgroup and on the length of the substring of bits for it to hold. The proof relies on bounds for character sums on elliptic curves established by Kohel and Shparlinski (ANTS–IV).


Author(s):  
Alessandro Gambini ◽  
Giorgio Nicoletti ◽  
Daniele Ritelli

AbstractTaking the hint from usual parametrization of circle and hyperbola, and inspired by the pathwork initiated by Cayley and Dixon for the parametrization of the “Fermat” elliptic curve $$x^3+y^3=1$$ x 3 + y 3 = 1 , we develop an axiomatic study of what we call “Keplerian maps”, that is, functions $${{\,\mathrm{{\mathbf {m}}}\,}}(\kappa )$$ m ( κ ) mapping a real interval to a planar curve, whose variable $$\kappa $$ κ measures twice the signed area swept out by the O-ray when moving from 0 to $$\kappa $$ κ . Then, given a characterization of k-curves, the images of such maps, we show how to recover the k-map of a given parametric or algebraic k-curve, by means of suitable differential problems.


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


2015 ◽  
Vol 100 (1) ◽  
pp. 33-41 ◽  
Author(s):  
FRANÇOIS BRUNAULT

It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.


2021 ◽  
Vol 15 (3) ◽  
pp. 111-122
Author(s):  
Jose Alejandro Lara Rodriguez ◽  
Victor Bautista-Ancona
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document