The action of knee joint afferents and the concomitant influence of cutaneous (sural) afferents on the discharge of triceps surae gamma-motoneurones in the cat

1996 ◽  
Vol 81 (1) ◽  
pp. 45-66 ◽  
Author(s):  
PH Ellaway ◽  
NJ Davey ◽  
WR Ferrell ◽  
RH Baxendale
1977 ◽  
Vol 40 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P. Grigg ◽  
B. J. Greenspan

1. One hundred thirty-eight knee joint afferents from posterior articular nerve (PAN), in primates, were recorded in dorsal root filaments. Responses of afferents were studied in relation to both passive manipulations of the knee and active contractions of quadriceps, semimembranosus, and gastrocnemius muscles. 2. When the knee was passively rotated, most neurons discharged only when extreme angular displacements were achieved. Response of neurons responding to passive extensions was linearly related to the torque applied to the knee. With maintained extensions, discharge in extension neurons adapted slowly. Some of the time constants of adaptation were similar to those for simultaneously recorded torque relaxation. 3. Contractions of quadriceps, semimembranosus, or gastrocnemius muscles could activate many neurons in the absence of changes in joint angle. For quadriceps-activated neurons, rather high torques (mean = 2,450 g with cm) were required. 4. The results support the hypothesis that joint afferents function as capsullar stretch receptors, responding to those mechanical events which result in loading of the capsule.


1990 ◽  
Vol 10 (5) ◽  
pp. 489-500 ◽  
Author(s):  
J. F. Iles ◽  
M. Stokes ◽  
A. Young
Keyword(s):  

2019 ◽  
Vol 237 (9) ◽  
pp. 2345-2352 ◽  
Author(s):  
Kalter Hali ◽  
Eric A. Kirk ◽  
Charles L. Rice

2004 ◽  
Vol 97 (5) ◽  
pp. 1908-1914 ◽  
Author(s):  
Jens Bojsen-Møller ◽  
Philip Hansen ◽  
Per Aagaard ◽  
Ulla Svantesson ◽  
Michael Kjaer ◽  
...  

The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean ± SD; age 30 ± 7 yr, body mass 76.8 ± 5.5 kg, height 1.83 ± 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125°). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 ± 20 vs. 97 ± 11 N·m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 ± 1.7 vs. 8.9 ± 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 ± 1.0 vs. 7.9 ± 1.2 mm). The amount and “direction” of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.


1997 ◽  
Vol 190 (4) ◽  
pp. 515-522 ◽  
Author(s):  
PAUL T. SALO ◽  
ELIZABETH THERIAULT

Sign in / Sign up

Export Citation Format

Share Document