Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo

2004 ◽  
Vol 97 (5) ◽  
pp. 1908-1914 ◽  
Author(s):  
Jens Bojsen-Møller ◽  
Philip Hansen ◽  
Per Aagaard ◽  
Ulla Svantesson ◽  
Michael Kjaer ◽  
...  

The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean ± SD; age 30 ± 7 yr, body mass 76.8 ± 5.5 kg, height 1.83 ± 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125°). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 ± 20 vs. 97 ± 11 N·m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 ± 1.7 vs. 8.9 ± 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 ± 1.0 vs. 7.9 ± 1.2 mm). The amount and “direction” of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.

2006 ◽  
Vol 100 (6) ◽  
pp. 2004-2011 ◽  
Author(s):  
Hae-Dong Lee ◽  
Taija Finni ◽  
John A. Hodgson ◽  
Alex M. Lai ◽  
V. Reggie Edgerton ◽  
...  

The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5 ± 1.9, 7.5 ± 2.7, and 48.1 ± 6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3 ± 0.3%, ranging from −1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was −6.4 ± 0.3%, ranging from −1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.


2001 ◽  
Vol 90 (5) ◽  
pp. 1671-1678 ◽  
Author(s):  
Tadashi Muramatsu ◽  
Tetsuro Muraoka ◽  
Daisuke Takeshita ◽  
Yasuo Kawakami ◽  
Yuichi Hirano ◽  
...  

Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 ± 1.1 and 5.9 ± 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogenously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.


2013 ◽  
Vol 114 (5) ◽  
pp. 523-537 ◽  
Author(s):  
Alexandre Fouré ◽  
Antoine Nordez ◽  
Christophe Cornu

Eccentric training is a mechanical loading classically used in clinical environment to rehabilitate patients with tendinopathies. In this context, eccentric training is supposed to alter tendon mechanical properties but interaction with the other components of the muscle-tendon complex remains unclear. The aim of this study was to determine the specific effects of 14 wk of eccentric training on muscle and tendon mechanical properties assessed in active and passive conditions in vivo. Twenty-four subjects were randomly divided into a trained group ( n = 11) and a control group ( n = 13). Stiffness of the active and passive parts of the series elastic component of plantar flexors were determined using a fast stretch during submaximal isometric contraction, Achilles tendon stiffness and dissipative properties were assessed during isometric plantar flexion, and passive stiffness of gastrocnemii muscles and Achilles tendon were determined using ultrasonography while ankle joint was passively moved. A significant decrease in the active part of the series elastic component stiffness was found ( P < 0.05). In contrast, a significant increase in Achilles tendon stiffness determined under passive conditions was observed ( P < 0.05). No significant change in triceps surae muscles and Achilles tendon geometrical parameters was shown ( P > 0.05). Specific changes in muscle and tendon involved in plantar flexion are mainly due to changes in intrinsic mechanical properties of muscle and tendon tissues. Specific assessment of both Achilles tendon and plantar flexor muscles allowed a better understanding of the functional behavior of the muscle-tendon complex and its adaptation to eccentric training.


2010 ◽  
Vol 108 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of concentric contractions and passive stretching on musculotendinous stiffness and muscle activity were studied in 18 healthy human volunteers. Passive and concentric plantar flexor joint moment data were recorded on an isokinetic dynamometer with simultaneous electromyogram (EMG) monitoring of the triceps surae, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction. The subjects then performed six 8-s ramped maximal voluntary concentric contractions before repeating both the passive and concentric trials. Concentric moment was significantly reduced (6.6%; P < 0.01), which was accompanied by, and correlated with ( r = 0.60–0.94; P < 0.05), significant reductions in peak triceps surae EMG amplitude (10.2%; P < 0.01). Achilles tendon stiffness was significantly reduced (11.7%; P < 0.01), but no change in gastrocnemius medialis muscle operating length was detected. The subjects then performed three 60-s static plantar flexor stretches before being retested 2 and 30 min poststretch. A further reduction in concentric joint moment (5.8%; P < 0.01) was detected poststretch at 90% of range of motion, with no decrease in muscle activity or Achilles tendon stiffness, but a significant increase in muscle operating length and decrease in tendon length was apparent at this range of motion ( P < 0.05). Thirty minutes after stretching, muscle activity significantly recovered to pre-maximal voluntary concentric contractions levels, whereas concentric moment and Achilles tendon stiffness remained depressed. These data show that the performance of maximal concentric contractions can substantially reduce neuromuscular activity and muscle force, but this does not prevent a further stretch-induced loss in active plantar flexor joint moment. Importantly, the different temporal changes in EMG and concentric joint moment indicate that a muscle-based mechanism was likely responsible for the force losses poststretch.


Author(s):  
Nathan L. Lehr ◽  
William H. Clark ◽  
Michael D. Lewek ◽  
Jason R. Franz

The triceps surae muscle tendon unit is comprised of the lateral and medial gastrocnemius (MG) and soleus (SOL) muscles and three in series elastic “subtendons” that form the Achilles tendon. Comparative literature and our own in vivo evidence suggests that sliding between adjacent subtendons may facilitate independent muscle actuation. We aim to more clearly define the relation between individual muscle activation and subtendon tissue displacements. Here, during fixed-end contractions, electrical muscle stimulation controlled the magnitude of force transmitted via individual triceps surae muscles while ultrasound imaging recorded resultant subtendon tissue displacements. We hypothesized that MG and SOL stimulation would elicit larger displacements in their associated subtendon. 10 young adults completed 4 experimental activations at 3 ankle angles (-20°, 0°, 20°) with knee flexed to approximately 20°: MG stimulation (STIMMG), SOL stimulation (STIMSOL), combined stimulation, and volitional contraction. At 20° plantarflexion, STIMSOL elicited 49% larger tendon non-uniformity (SOL – MG subtendon tissue displacement) than that of STIMMG (p=0.004). For STIMSOL, a one-way post-hoc ANOVA revealed a significant main effect of ankle angle (p=0.009) on Achilles tendon non-uniformity. However, peak tendon non-uniformity decreased by an average of 61% from plantarflexion to dorsiflexion, likely due to an increase in passive tension. Our results suggest that localized tissue displacements within the Achilles tendon respond in anatomically consistent ways to differential patterns of triceps surae muscle activation, but these relations are highly susceptible to ankle angle. This in vivo evidence points to at least some mechanical independence in actuation between the human triceps surae muscle-subtendon units.


2014 ◽  
Vol 117 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Tahir Masood ◽  
Kari Kalliokoski ◽  
S. Peter Magnusson ◽  
Jens Bojsen-Møller ◽  
Taija Finni

High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control ( n = 10) and patient ( n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker ( P < 0.05) than the asymptomatic leg at baseline, but improved ( P < 0.001) with eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus ( P < 0.01) and lateral gastrocnemius ( P < 0.001) in the symptomatic leg, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus ( P < 0.05). While both patient legs had higher tendon GU than the controls ( P < 0.05), there was no rehabilitation effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs ( P < 0.05), probably reflecting an effort to compensate for the decreased force potential. The rehabilitation resulted in greater SEMG activity in the lateral gastrocnemius ( P < 0.01) of the symptomatic leg with no other within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle.


2005 ◽  
Vol 99 (2) ◽  
pp. 665-669 ◽  
Author(s):  
Tetsuro Muraoka ◽  
Tadashi Muramatsu ◽  
Tetsuo Fukunaga ◽  
Hiroaki Kanehisa

The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (ΔX) and strain of the Achilles tendon (ε), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-ΔX or F-ε relationships between men and women. ΔX and ε were 9.8 ± 2.6 mm and 5.3 ± 1.6%, respectively, and were positively correlated to F ( r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-ΔX ( P < 0.01) and F-ε ( P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruoli Wang ◽  
Shiyang Yan ◽  
Marius Schlippe ◽  
Olga Tarassova ◽  
Gaia Valentina Pennati ◽  
...  

The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: − 10.96 ° ± 3.48 ° ; SOL: − 8.50 ° ± 4.03 ° ), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42  mm; SOL: 31.39 ± 6.42  mm), and stiffness (GM: 23.18 ± 13.46  Nmm-1; SOL: 31.57 ± 13.26  Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50  MPa; SOL: 4.90 ± 1.88  MPa, p = 0.024 ), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50  N; SOL: 174.59 ± 79.54  N, p = 0.020 ). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.


2009 ◽  
Vol 107 (4) ◽  
pp. 1181-1189 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of isometric contractions and passive stretching on muscle-tendon mechanics and muscle activity were studied in 16 healthy human volunteers. First, peak concentric and passive ankle joint moment data were recorded on an isokinetic dynamometer with electromyographic monitoring of the triceps surae; real-time motion analysis of the lower leg and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Second, the subjects performed six 8-s maximal voluntary isometric contractions (MVICs) before repeating the passive and active trials. Although there was no decrease in isometric joint moment after MVICs, peak concentric moment was significantly reduced (11.5%, P < 0.01). This was accompanied by, and correlated with ( r = 0.90, P < 0.01), significant reductions in peak triceps surae electromyographic amplitude (21.0%, P < 0.01). Achilles tendon stiffness (10.9%, P < 0.01) and passive joint moment (4.9%, P < 0.01) were also significantly reduced. Third, the subjects performed three 60-s static plantar flexor stretches before being retested 2 and 30 min after stretch. The stretch protocol caused no significant change in any measure. At 30 min after stretching, significant recovery in concentric moment and muscle activity was detected at dorsiflexed joint angles, while Achilles tendon stiffness and passive joint moment remained significantly reduced. These data show that the performance of MVICs interrupts the normal stretch-induced losses in active and passive plantar flexor joint moment and neuromuscular activity, largely because concentric strength and tendon properties were already affected. Importantly, the decrease in Achilles tendon stiffness remained 30 min later, which may be an important etiological factor for muscle-tendon strain injury risk.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5182 ◽  
Author(s):  
William H. Clark ◽  
Jason R. Franz

The human Achilles tendon (AT) consists of sub-tendons arising from the gastrocnemius and soleus muscles that exhibit non-uniform tissue displacements thought to facilitate some independent actuation. However, the mechanisms governing non-uniform displacement patterns within the AT, and their relevance to triceps surae muscle contractile dynamics, have remained elusive. We used a dual-probe ultrasound imaging approach to investigate triceps surae muscle dynamics (i.e., medial gastrocnemius-GAS, soleus-SOL) as a determinant of non-uniform tendon tissue displacements in the human AT. We hypothesized that superficial versus deep differences in AT tissue displacements would be accompanied by and correlate with anatomically consistent differences in GAS versus SOL muscle shortening. Nine subjects performed ramped maximum voluntary isometric contractions at each of five ankle joint angles spanning 10° dorsiflexion to 30° plantarflexion. For all conditions, SOL shortened by an average of 78% more than GAS during moment generation. This was accompanied by, on average, 51% more displacement in the deep versus superficial region of the AT. The magnitude of GAS and SOL muscle shortening positively correlated with displacement in their associated sub-tendons within the AT. Moreover, and as hypothesized, superficial versus deep differences in sub-tendon tissue displacements positively correlated with anatomically consistent differences in GAS versus SOL muscle shortening. We present the first in vivo evidence that triceps surae muscle dynamics may precipitate non-uniform displacement patterns in the architecturally complex AT.


Sign in / Sign up

Export Citation Format

Share Document