Temporal control of muscle synergies is linked with alpha‐band neural drive

2021 ◽  
Author(s):  
Christopher M. Laine ◽  
Brian A. Cohn ◽  
Francisco J. Valero‐Cuevas
2015 ◽  
Vol 114 (2) ◽  
pp. 1041-1047 ◽  
Author(s):  
Utku Ş. Yavuz ◽  
Francesco Negro ◽  
Deborah Falla ◽  
Dario Farina

It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5–13 Hz) and with descending cortical input (beta band, 15–30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5–13 Hz) between the baseline and hypertonic (painful) conditions for both muscles ( P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower ( P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain.


2019 ◽  
Author(s):  
Pablo Ortega-Auriol ◽  
Winston D Byblow ◽  
Angus JC McMorland

AbstractTo elucidate the underlying physiological mechanism of muscle synergies, we investigated the functional corticomuscular and intermuscular binding during an isometric upper limb task in 14 healthy participants. Cortical activity was recorded using 32-channel encephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorization (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy preferred directions. A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Functional connectivity was estimated using corticomuscular coherence (CMC) and intermuscular coherence (IMC). Overall, we were able to extract four different synergies from the multidirectional task. A significant alpha band IMC was present consistently in all extracted synergies. Moreover, alpha band IMC was higher between muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. In addition, there is a relationship between a synergy muscle weight and the level of IMC. Our findings suggest the existence of a consistent shared input between muscles of each synergy. Finally, the existence of a shared input onto synergistic muscles within a synergy supports the idea of neurally-derived muscle synergies that build human movement.


2007 ◽  
Author(s):  
Waltraud Stadler ◽  
Karim N'Diaye ◽  
Richard Ragot ◽  
Wolfgang Klimesch ◽  
Catherine Tallon-Baudry ◽  
...  

2007 ◽  
Author(s):  
Robert G. Cook ◽  
Hara A. Rosen

Sign in / Sign up

Export Citation Format

Share Document