Improved Method for Fracture Toughness Testing Using Compliance Method for High Toughness Materials

2021 ◽  
Author(s):  
Kuk-Cheol Kim ◽  
Jae-Suk Jeong ◽  
Choo-Won Lee ◽  
Jhin-Ik Suk ◽  
Joo-Hwan Kwak
Author(s):  
Sergio Limon ◽  
Peter Martin ◽  
Mike Barnum ◽  
Robert Pilarczyk

The fracture process of energy pipelines can be described in terms of fracture initiation, stable fracture propagation and final fracture or fracture arrest. Each of these stages, and the final fracture mode (leak or rupture), are directly impacted by the tendency towards brittle or ductile behavior that line pipe steels have the capacity to exhibit. Vintage and modern low carbon steels, such as those used to manufacture energy pipelines, exhibit a temperature-dependent transition from ductile-to-brittle behavior that affects the fracture behavior. There are numerous definitions of fracture toughness in common usage, depending on the stage of the fracture process and the behavior or fracture mode being evaluated. The most commonly used definitions in engineering fracture analysis of pipelines with cracks or long-seam weld defects are related to fracture initiation, stable propagation or final fracture. When choosing fracture toughness test data for use in engineering Fracture Mechanics-based assessments of energy pipelines, it is important to identify the stage of the fracture process and the expected fracture behavior in order to appropriately select test data that represent equivalent conditions. A mismatch between the physical fracture event being modeled and the chosen experimental fracture toughness data can result in unreliable predictions or overly conservative results. This paper presents a description of the physical fracture process, behavior and failure modes that pipelines commonly exhibit as they relate to fracture toughness testing, and their implications when evaluating cracks and cracks-like features in pipelines. Because pipeline operators, and practitioners of engineering Fracture Mechanics analyses, are often faced with the challenge of only having Charpy fracture toughness available, this paper also presents a review of the various correlations of Charpy toughness data to fracture toughness data expressed in terms of KIC or JIC. Considerations with the selection of an appropriate correlation for determining the failure pressure of pipelines in the presence of cracks and long-seam weld anomalies will be discussed.


1988 ◽  
Vol 20 (5) ◽  
pp. 698-702
Author(s):  
I. D. Abushenkov ◽  
A. I. Alekseev ◽  
V. Ya. Il'ichev ◽  
N. I. Mokryi ◽  
A. I. Telegon ◽  
...  

2017 ◽  
Vol 209 (1-2) ◽  
pp. 223-229 ◽  
Author(s):  
Dong-Yeob Park ◽  
Babak Shalchi Amirkhiz ◽  
Jean-Philippe Gravel ◽  
Jie Liang ◽  
Renata Zavadil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document