Study on Effect of Sloshing Phenomenon on Water Level of Pressurizer

2021 ◽  
Author(s):  
Jiarui Chen ◽  
Dongyang Li ◽  
Sichao Tan ◽  
Jianchang Liu
Author(s):  
Shuo Yang ◽  
Raymond K. Yee

As a common phenomenon in liquid motions, sloshing usually happens in a partially filled liquid tank of moving vehicle or structure. The objectives of this paper are to study sloshing behavior in rigid tank and deformable tank, and to develop a better performance baffle design in the tank under seismic excitations. The tank is surged with a sinusoidal oscillation about horizontal x-direction. The hydro-elasticity effect of sloshing pressure on the tank wall was taken into consideration due to the fluid-structure interaction between impact pressures and tank structures. ABAQUS finite element program using Coupled Eulerian-Lagrangian (CEL) technique was employed to simulate fluid sloshing. The sloshing phenomenon was studied in rigid tank and deformable tank models with three different water levels, and the effect of wall thickness of the deformable tank on sloshing behavior was discussed. One way to minimize the effect of sloshing in a tank, baffles are used and installed in the middle of the tank, and then various heights and material types of baffle were evaluated. The simulation results show that higher water level case creates greater pressure impact on the tank wall than lower water level case, and the elasticity of the tank structure would reduce the impact pressure of the wall. For the simulation tank model with size of 1m (H) × 1m (W) × 0.2m (D), better performance baffle was found to be the one with the height of 0.35m and was made of acrylic material. Moreover, the conclusion of this study can be extrapolated to other dimensions of the model based on similarity theory. This paper also can serve as an aid in further studying sloshing phenomenon. The findings of this study can be applied to restrain or minimize sloshing motions inside a tank.


Author(s):  
Chen Jiarui ◽  
Liu Jianchang ◽  
Li Dongyang ◽  
Tan Sichao

Abstract As the key equipment to control the pressure stability of the coolant system, the pressurizer plays a role in maintaining the primary system pressure in the reactor. During the operation of the sea-based reactor, the internal free liquid level of the pressurizer will fluctuate greatly with different marine cycles, causing additional acceleration in the horizontal or vertical direction, which will cause the water level measured by the differential pressure measurement method to deviate from the actual water level. It will adversely affect the judgment and control of the signal. Moreover, the fluctuating liquid level will frequently trigger the water level alarm signal, resulting in the submersion of the sprinkler tuber and the exposure of the electric heating rod, which will reduce the safety and economy of the reactor. Therefore, this research is aimed at suppressing the fluctuation range of the water level and correcting the deviation of the water level measurement so as to improve the inherent safety of the reactor. In the present study, the experimental system consists of a motion excitation drive mechanism and an optical system. The experimental system has successfully established sloshing phenomenon of the pressurizer under different forms of motion by Laser induced fluorescence (LIF) technique and the experimental results obtained are compared with numerical results. The results of the research show that the pressurizer can make significant free surface fluctuation when excitation close to the natural frequency of the pressurizer. The suppression model developed by FLUTENT can effectively reduce the fluctuation range of free liquid level. In addition, the deviation of water level measurement enlarges with the swing angle increasing. The deviation can be reduced to the allowable error range by means of angle correction.


Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


Sign in / Sign up

Export Citation Format

Share Document