dry season
Recently Published Documents





2022 ◽  
Vol 10 (1) ◽  
pp. 011-022
Richard Kabuyanga Kabuseba ◽  
Pierrot Lundimu Tugirimana ◽  
Jean Pierre Elongi Moyene ◽  
Xavier Kinenkinda Kalume ◽  
Jean-Baptiste Kakoma Sakatolo Zambèze

Background: The etiology of preeclampsia remains less well known. It is noted that low vitamin D levels are associated with a high risk of preeclampsia (PE). Calcium (Ca2+) levels during pregnancy appear to be involved in pregnancy-induced hypertension. Recent studies indicate that serum calcium levels may have a role in preeclampsia. Vitamin D promotes absorption of proper concentration of calcium in the blood which helps to lower blood pressure. The complications associated with calcium deficiency during a normal pregnancy are numerous and have not been extensively studied in Goma. Objective: To assess blood calcium levels (ionic and total) in preeclamptic women and to analyse the seasonal influence on preeclampsia in Goma. Method: A prospective case-control study (without matching) of 190 pregnant women without cardiovascular or endocrine diseases for a case-control ratio of 1∶1 was conducted in six hospitals in Goma. Blood ionogram was performed by an automated system directly after blood sampling and vitamin D was measured using enzyme-linked immunosorbent method. Results: The mean ionised calcium level in preeclamptic woman was 1.24±0.16 mmol/L (0.48-1.59) compared to 1.27±0.17 mmol/L (0.88-2.30) in normal pregnant woman (p=0.214). A slight negative correlation between blood calcium and blood pressure was observed in pregnant women. Low vitamin D levels were associated with preeclampsia. Hypovitaminosis D in the preeclamptic group was more observed during the rainy season than during the dry season. Pregnancies complicated by PE were from fertilisations occurring during the rainy season while the dry season was characterised by a high admission of preeclamptics. Conclusion: The study found that preeclamptic women in Goma had hypocalcemia. There was also a weak negative correlation between blood pressure and serum calcium levels. The majority of preeclamptics were diagnosed during the dry season, while conception with a PE complication occurred during the rainy season. As this is a first study in this area for the Great Lakes region of Africa, a more in-depth study with a larger sample size is desired.

Yayat Hidayat ◽  
Wahyu Purwakusuma ◽  
Sri Malahayati Yusuf ◽  
Latief Mahir Rachman ◽  
Enni Dwi Wahjunie ◽  

The research is aimed to analyze leachate, surface water and ground water characteristics around  Galuga landfill site, Bogor District. Water samples had been taken in dry season of 2014 and in the end of rainy season of 2015 from several sites in areas around Galuga landfills which included leachate water, surface water, and ground water.  Leachate, surface water and ground water had   temperature and pH in normal ranges; whereas nitrate and Pb contents were high to very high levels, especially in  site adjacent to waste piles. The concentrations decreased in line with increasing distance from waste piles. Higher content of nitrate in leachate occurred in dry season, but in well water it was found in rainy season. Meanwhile,  Pb content in well water were high, both in dry and rainy seasons. Concentrations of nitrate and Pb in leachate water were higher than wastewater quality standard, so that the leachate water were not safe to be discharged directly to natural water body. The high content of nitrate and Pb caused the well water unsuitable to be consumed without water treatment processing.

Lina Saraswati ◽  
Sugeng Prijono ◽  
Budi Prasetya

Background: The study of the moisture balance can be used to suppose the plants water requirement and the plants water use efficiency. The moisture balance influenced by climate factor, therefore climate change can affect the moisture balance especially in rainfed. Therefore, an effort is needed to manage soil moisture in rainfed as a climate change mitigation measure: soil and water conservation. This study aimed to determine the influence of soil and water conservation on the moisture balance in the coffee root zone. Methods: This study was conducted at people’s coffee plantation of Argotirto village, Sumbermanjing Wetan District, Malang Regency, located between 8.2411-8.1443 S and 112.4031-112.4634 E. Observation were made on February to November 2020, divided into observations in the wet season, dry seasons and flowering period. The observation plots consisted of terraced plot (P0), terraced + straight silt pit (P1), terraced + L-shaped silt pit (P2) and terrace + biopore (P3). The observation variables were: soil physical characteristics and moisture balance components there were precipitation, percolation, runoff, evapotranspiration and soil moisture storage. Result: At P1, the runoff depth was 80.89% lower and the percolation was 44.22% higher than P0. The total soil moisture storage at P1 was 20.06% higher than P0 in the dry season, indicating that P1 could increase the period of surplus moisture in the dry season.

2022 ◽  
Vol 12 (1) ◽  
Anita Devi ◽  
Syed Ainul Hussain ◽  
Monika Sharma ◽  
Govindan Veeraswami Gopi ◽  
Ruchi Badola

AbstractJarman–Bell (1974) hypothesized that in the dry savanna of Africa, small-bodied herbivores tend to browse more on forage with high protein and low fibre content. This implies browsing on high nutritive forage by meso-herbivores, and grazing and mixed feeding on coarse forage by mega-herbivores. We tested this hypothesis in the riverine alluvial grasslands of the Kaziranga National Park (KNP), where seasonal flood and fire play an important role in shaping the vegetation structure. We analyzed the feeding habits and quality of major forage species consumed by three mega-herbivores, viz. greater one-horned rhino, Asian elephant, and Asiatic wild buffalo, and three meso-herbivores, viz. swamp deer, hog deer, and sambar. We found that both mega and meso-herbivores were grazers and mixed feeders. Overall, 25 forage plants constituted more than 70% of their diet. Among monocots, family Poaceae with Saccharum spp. (contributing > 9% of the diet), and, among dicots, family Rhamnaceae with Ziziphus jujuba (contributing > 4% of the diet) fulfilled the dietary needs. In the dry season, the concentration of crude protein, neutral detergent fibre, calcium, sodium, and phosphorous varied significantly between monocots and dicots, whereas only calcium and sodium concentrations varied significantly in the wet season. Dicots were found to be more nutritious throughout the year. Compared to the dry season, the monocots, viz. Alpinia nigra, Carex vesicaria, Cynodon dactylon, Echinochloa crus-galli, Hemarthria compressa, Imperata cylindrica, and Saccharum spp., with their significantly high crude protein, were more nutritious during the wet season. Possibly due to the availability of higher quality monocots in the wet season, both mega and meso-herbivores consume it in high proportion. We concluded that the Jarman–Bell principle does not apply to riverine alluvial grasslands as body size did not explain the interspecific dietary patterns of the mega and meso-herbivores. This can be attributed to seasonal floods, habitat and forage availability, predation risk, and management practices such as controlled burning of the grasslands. The ongoing succession and invasion processes, anthropogenic pressures, and lack of grassland conservation policy are expected to affect the availability of the principal forage and suitable habitat of large herbivores in the Brahmaputra floodplains, which necessitates wet grassland-based management interventions for the continued co-existence of large herbivores in such habitats.

Abstract We present a climatological study of aerosols in four representative Caribbean islands based on daily mean values of aerosol optical properties for the period 2008- 2016, using the Aerosol Optical Depth (AOD) and Ångström Exponent (AE) to classify the dominant aerosol type. A climatological assessment of the spatio-temporal distribution of the main aerosol types, their links with synoptic patterns and the transport from different sources is provided. Maximum values of AOD occur in the rainy season, coinciding with the minimum in AE and an increased occurrence of dust, while the minimum of AOD occurs in the dry season, due to the predominance of marine aerosols. Marine and dust aerosol are more frequent in the easternmost islands and decrease westwards due to an increasing of continental and mixture dust aerosols. Therefore, the westernmost station displays the most heterogeneous composition of aerosols. Using a weather type classification, we identify a quantifiable influence of the atmospheric circulation in the distribution of Caribbean aerosols. However, they can occur under relatively weak and/or diverse synoptic patterns, typically involving transient systems and specific configurations of the Azores High that depend on the considered station. Backward trajectories indicate that dry-season marine aerosols and rainy-season dust are transported by air parcels travelling within the tropical easterly winds. The main source region for both types of aerosols is the subtropical eastern Atlantic, except for Cuba, where the largest contributor to dry-season marine aerosols is the subtropical western Atlantic. Different aerosol types follow similar pathways, suggesting a key role of emission sources in determining the spatio-temporal distribution of Caribbean aerosols.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 157
Qian Xiong ◽  
Zhongyi Sun ◽  
Wei Cui ◽  
Jizhou Lei ◽  
Xiuxian Fu ◽  

Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.

2022 ◽  
Matawork Gobena Milkias ◽  
Wondimu Teka Woyamo ◽  
Dessalegn Genzabu Genzabu

Abstract This study was conducted in Kaffa, Bench Maji and Sheka zones with the objective of assessing livestock feed processing and storage mechanisms in South West Ethiopia. Purposive sampling technique was used to select study districts based on livestock population, accessibility and availability of feed resources. A total of 384 households having a minimum one hectare of land and livestock were randomly selected for interview. The mean total number of cattle in the study area was 8.48+6.79 per households. Majority of the respondents could not practice livestock feed processing and storage mechanisms in dry and wet season in the study area. The bases for feed provision for livestock in the study area were production level, work load and availability of feed ingredients. Different plants parts were used for livestock to increase milk yield, to improve growth rate and to treat diseases. Livestock production was lowest in dry season due to lack of feed shortage in the dry season. Due to this conclusion, government office should give training how to process and store feeds for dry season.

2022 ◽  
Vol 10 (1) ◽  
pp. 72
Rui Ma ◽  
Jianrong Zhu

In a multilevel bifurcated estuary, the channels between the bifurcated branches play important roles in the exchanges of water and salt. In the Changjiang Estuary, the Hengsha Channel (HC) connects the North Channel (NC) and the North Passage (NP). In this paper, based on a two-way nesting unstructured quadrilateral grid, finite-differencing, three-dimensional estuarine and coastal ocean model, the tidal and seasonal variations in the water and salt transports in the HC were simulated, and their dynamic mechanism was analyzed. The residual water and salt transports in the HC both flow southward from the NC to the NP. In wet season, the residual water transport in the HC is 677 m3/s during neap tide and 245 m3/s during spring tide, and the residual salt transport is 0. In dry season, the residual water and salt transports in the HC are 1278 m3/s and 0.38 t/s during neap tide, respectively, and 1328 m3/s and 12.61 t/s during spring tide. Affected by the northerly wind and the southeastward baroclinic gradient force, the water and salt fluxes in dry season are much larger than those in wet season. The dynamic mechanism responsible for the water transport in the HC was numerically simulated and analyzed.

ZooKeys ◽  
2022 ◽  
Vol 1080 ◽  
pp. 21-52
José Norberto Lucio-García ◽  
Uriel Jeshua Sánchez-Reyes ◽  
Jorge Víctor Horta-Vega ◽  
Jesús Lumar Reyes-Muñoz ◽  
Shawn M. Clark ◽  

Leaf beetles (Coleoptera: Chrysomelidae) constitute a family of abundant, diverse, and ecologically important herbivorous insects, due to their high specificity with host plants, a close association with vegetation and a great sensitivity to microclimatic variation (factors that are modified gradually during the rainy and dry seasons). Therefore, the effects of seasonality (rainy and dry seasons) and microclimate on the community attributes of chrysomelids were evaluated in a semideciduous tropical forest fragment of northeastern Mexico. Monthly sampling was conducted, between March 2016 and February 2017, with an entomological sweep net in 18 plots of 20 × 20 m, randomly distributed from 320 to 480 m a.s.l. Seven microclimatic variables were simultaneously recorded during each of the samplings, using a portable weather station. In total, 216 samples were collected at the end of the study, of which 2,103 specimens, six subfamilies, 46 genera, and 71 species were obtained. The subfamily Galerucinae had the highest number of specimens and species in the study area, followed by Cassidinae. Seasonality caused significant changes in the abundance and number of leaf beetle species: highest richness was recorded in the rainy season, with 60 species, while the highest diversity (lowest dominance and highest H’ index) was obtained in the dry season. Seasonal inventory completeness of leaf beetles approached (rainy season) or was higher (dry season) than 70%, while the faunistic similarity between seasons was 0.63%. The outlying mean index was significant in both seasons; of the seven microclimatic variables analyzed, only temperature, heat index, evapotranspiration and wind speed were significantly related to changes in abundance of Chrysomelidae. Association between microclimate and leaf beetles was higher in the dry season, with a difference in the value of importance of the abiotic variables. The results indicated that each species exhibited a different response pattern to the microclimate, depending on the season, which suggests that the species may exhibit modifications in their niche requirements according to abiotic conditions. However, the investigations must be replicated in other regions, in order to obtain a better characterization of the seasonal and microclimatic influence on the family Chrysomelidae.

2022 ◽  
Vol 9 ◽  
Ryan Peek ◽  
Katie Irving ◽  
Sarah M. Yarnell ◽  
Rob Lusardi ◽  
Eric D. Stein ◽  

Large state or regional environmental flow programs, such as the one based on the California Environmental Flows Framework, rely on broadly applicable relationships between flow and ecology to inform management decisions. California, despite having high flow and bioassessment data density, has not established relationships between specific elements of the annual hydrograph and biological stream condition. To address this, we spatially and temporally linked USGS gage stations and biological assessment sites in California to identify suitable paired sites for comparisons of streamflow alteration with biological condition at a statewide scale. Flows were assessed using a set of functional flow metrics that provide a comprehensive way to compare alteration and seasonal variation in streamflow across different locations. Biological response was evaluated using the California Stream Condition Index (CSCI) and Algal Stream Condition Index (ASCI), which quantify biological conditions by translating benthic invertebrate or algal resources and watershed-scale environmental data into an overall measure of stream health. These indices provide a consistent statewide standard for interpreting bioassessment data, and thus, a means of quantitatively comparing stream conditions throughout the state. The results indicate that indices of biological stream condition were most closely associated with flow alteration in seasonality and timing metrics, such as fall pulse timing, dry-season timing, and wet season timing. Magnitude metrics such as dry-season baseflow, wet season baseflow, and the fall pulse magnitude were also important in influencing biological stream conditions. Development of ecological flow needs in large-scale environmental programs should consider that alteration to any of the seasonal flow components (e.g., dry-season baseflow, fall pulse flow, wet-season baseflow, spring recession flow) may be important in restructuring biological communities.

Sign in / Sign up

Export Citation Format

Share Document