Experimental and Numerical Analysis of Gas Premix Turbulent Flames Stabilized in a Swirl Burner With Central Bluff Body

2021 ◽  
Author(s):  
Fernando Biagioli ◽  
Alessandro Innocenti ◽  
teresa marchione ◽  
Steffan Terhaar
Author(s):  
Fernando Biagioli ◽  
Alessandro Innocenti ◽  
Steffen Terhaar ◽  
Teresa Marchione

Abstract Lean premixed gas turbulent flames stabilized in the flow generated by an industrial swirl burner with a central bluff body are experimentally found to behave bi-stable. This bi-stable behaviour, which can be triggered via a small change in some of the controlling parameters, for example the bulk equivalence ratio, consists in a rather sudden transition of the flame from completely lifted to well attached to the bluff body. While several experimental investigations exist on this topic, numerical analysis is limited. The present work is therefore also of numerical nature, with a two-fold scope: a) simulation and validation with experiments of the bi-stable flame behaviour via Computational Fluid Dynamics (CFD) in the form of Large Eddy Simulation (LES) and b) analysis of CFD results to shed light on the flame stabilization properties. LES results, in case of the lifted flame, show that the vortex core is sharply precessing at a given frequency. Phase averaging these results at the frequency of precession clearly indicates a counter-intuitive and unexpected presence of reverse flow going all the way through the flame apex and the bluff body tip. A simple one-dimensional flame stabilization model is applied to explain the bi-stable flame behaviour.


Author(s):  
Fernando Biagioli ◽  
Alessandro Innocenti ◽  
Steffen Terhaar ◽  
Teresa Marchione

Abstract Lean premixed gas turbulent flames stabilized in the flow generated by an industrial swirl burner with a central bluff body are experimentally found to behave bi-stable. This bi-stable behaviour, which can be triggered via a small change in some of the controlling parameters, for example the bulk equivalence ratio, consists in a rather sudden transition of the flame from completely lifted to well attached to the bluff body. This has impact on combustion dynamics, emissions and pressure losses. While several experimental investigations exist on this topic, numerical analysis is limited. The present work is therefore also of numerical nature, with a two-fold scope: a) simulation and validation with experiments of the bi-stable flame behaviour via Computational Fluid Dynamics (CFD) in the form of Large Eddy Simulation (LES) and b) analysis of CFD results to shed light on the flame stabilization properties. LES results, in case of the lifted flame, show that the vortex core is sharply precessing at a given frequency. Phase averaging these results at the frequency of precession clearly indicates a counter-intuitive and unexpected presence of reverse flow going all the way through the flame apex and the bluff body tip. The counter-intuitive presence of a lifted flame is explained here in terms of the phase averaged data which show that the flame apex is not placed at the centre of the spinning reverse flow region. It is instead slightly shifted radially outward where the axial velocity recovers to low positive values of the order of the turbulent burning rate. A simple one-dimensional flame stabilization model is applied to explain this peculiar flame behaviour. This model provides first an estimation of the flame radius of curvature in terms of axial velocity and turbulence quantities. This radius is therefore used to determine the total flux of reactants into the flame, given by an axial convection and a radial diffusion contributions. Subsequently the possibility of the flame positioned at the centre of the vortex is excluded based on the balance between this flux and the turbulent burning rate. A clear explanation of the mechanism leading to the sudden flame jump has instead not been identified and only some hypotheses are provided.


2014 ◽  
Vol 161 (11) ◽  
pp. 2842-2848 ◽  
Author(s):  
Matthias Euler ◽  
Ruigang Zhou ◽  
Simone Hochgreb ◽  
Andreas Dreizler

Author(s):  
Kuo C. San ◽  
Yu Z. Huang ◽  
Shun C. Yen

Rifled fillisters were milled on cannular frustums to modulate flow behavior and to increase the turbulence intensity (TI). The TI and combustion intensity were compared in four configurations of frustums—unrifled, inner-rifled, outer-rifled, and two-faced rifled. The flame patterns and flame lengths were observed and measured by direct-color photography. The temperature profiles and (total) combustion intensity were detected and calculated with an R-type thermocouple. Three flame patterns (jet, flickering, and lifted flames) were defined behind the pure-jet nozzle. Four flame patterns (jet, flickering, bubble, and turbulent flames) were observed behind the unrifled frustum. The bluff-body frustum changes the lifted flame to turbulent flame due to a high T.I at high central-fuel velocity (uc). The experimental data showed that the grooved rifles improved the air-propane mixing, which then improved the combustion intensity. The rifled mechanism intensified the swirling effect and then the flame-temperature profiles were more uniform than those behind the pure-jet nozzle. The increased TI also resulted in the shortest flame length behind the two-faced rifled frustum and increased the total combustion intensity.


2015 ◽  
Vol 74 ◽  
pp. 1032-1039 ◽  
Author(s):  
Benmenine Djamel ◽  
Bentebbiche Abdelhalime ◽  
Hadjab Riyadb ◽  
Zighmi Nadia

1982 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
T. Sarpkaya ◽  
H. K. Kline

Measurement of the forces acting on a circular cylinder and those on three other noncircular cylinders is reported. The results confirm and quantify the profound effects of the shedding of the first two or three vortices on all the characteristics of resistance and demonstrate that the evolution of the flow, and hence the forces, significantly depend on whether the separation points are fixed or mobile, or a combination thereof. The data are expected to form the basis of future numerical analysis based on refined discrete vortex models.


Author(s):  
Pratap Sathiah ◽  
Andrei N. Lipatnikov

A typical stationary premixed turbulent flame is the developing flame, as indicated by the growth of mean flame thickness with distance from flame-stabilization point. The goal of this work is to assess the importance of modeling flame development for RANS simulations of confined stationary premixed turbulent flames. For this purpose, submodels for developing turbulent diffusivity and developing turbulent burning velocity, which were early suggested by our group (FSC model) and validated for expanding spherical flames [4], have been incorporated into the so-called Zimont model of premixed turbulent combustion and have been implemented into the CFD package Fluent 6.2. The code has been run to simulate a stationary premixed turbulent flame stabilized behind a triangular bluff body in a rectangular channel using both the original and extended models. Results of these simulations show that the mean temperature and velocity fields in the flame are markedly affected by the development of turbulent diffusivity and burning velocity.


Sign in / Sign up

Export Citation Format

Share Document